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ABSTRACT

This report provides the equations of evolution of an encounter involving a teleoperated
vehicle. The global model contains interconnected submodels describing the conventional exter-
nal primitives of the encounter (base states), suddenly occurring events (feature states), and a
dynamic description of the remote operator (the generalized operator model). This model is
phrased as a set of stochastic differential equations that can accommodate both linear and non-
linear effects. The final section of the report places these results within the context of the multi-

X problem, and indicates the direction of future research which will yield a quantitative

description of vehicle performance in a rapidly changing environment.




1. INTRODUCTION

This report presents the initial results of an investigation seeking to determine the perfor-
mance capability of a "pointing-and-tracking” system incorporating a teleoperated vehicle (TOV)
when the remote operator is required to perform several tasks simultaneously. Determining per-
formance in a multitask environment is significantly more complicated than it is in the single
task setting. Not only must the encounter dynamics be delineated in each of the alternative
modes of operation, but the transition properties of the system as it moves between tasks must be

described in a compatible manner.

An encounter involving a TOV may have several primitive elements, and an analytical
description is required for each. The TOV is itself an electromechanical device with lags, gains,
etc. Its primary properties are conveniently phrased in terms of a set of ordinary differential
equations. These equations relate the actuating signals arising from action by the remote opera-
tor to the dynamic variables of the TOV; e.g., position, velocity, orientation, etc. To tne extent
that there is uncertainty in the way that the TOV will respond to direct commands, a random

forcing may be included in the dynamic equation at the TOV.

The tasks which engage the operator’s attention often involve objects that are much less
predictable than is the TOV. For example, if the operator seeks to track an evasive target,
uncertainty in target motion reduces the incentive to utilize a high-order dynamic model of target
evolution. Instead, a simple model driven by a large amplitude exogenous process is a more

appropriate description of target behavior.

Similarly, if the TOV is required to follow a prespecified path, the path behavior can be
phrased in terms of an ordinary differential equation, and the operator causes the TOV states to
match the associated path states. When the path becomes less predictable, a stochastic model of

the path becomes expedient.
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The use of stochastic forcing terms is an attractive way to quantify the uncertainty that

exists in how an encounter will evolve. A model of low dimension will frequently suffice to
describe such complex dynamic objects as tanks, APCs, etc. Indeed, the more uncertainty that

surrounds the motion of one of the primitives, the lower the dynamic order needs to be.

In order that this procedure yield useful results, the behavior of the model should du;)]icate
that observed in tests of the object being modelled. Frequently such empirical data is phrased in
terms of a power spectral density, and the resulting model takes the form of a simple Gauss-
Markov process. First or second order models often suffice to give a close approximation to the

power spectral density.

While this spectrally-based approach is justified as long as only "linear-quadratic" analysis
is required, it may yield a model whose sample function behavior bears little resemblance to those
of the object. A linear Gauss-Markov model has continuous sample paths of great local volatil-
ity. Such a model does not have the inherent flexibility required to produce sample functions
having discrete changes at isolated points in time. For example, while a target operating in a
benign environment may be well described by Gauss-Markov procesﬁ, a target in a hostile
environment may execute evasive maneuvers that involve sudden and unpredictable changes in
acceleration. Another example of a discrete event which abruptly influences the evolution of an

encounter is that of the sudden appearance or disappearance of a target.

Changes of the type described above can be thought of as a variation in the mode of evolu-
tion of the encounter. A modal descriptor or feature fixes the equations of motion which
currently govern the basic system elements. The advantage of a TOV is that it injects a human
intelligence into the loop dynamics. The human operator has a unique ability to discern the fun-
damental features of a time varying and spatially cluttered sequence of images, and as a conse-

quence, the control becomes contingent on the observed feature process.

While it is desirable to construct a model that matches the behavioral qualities of the exter-
nal portion of the encounter as experienced by the operator of the TOV, it is essential that the

method of description be simple in delineation, and lead to tractable analytical problems. By
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"simple in delineation" it is meant that the model has few parameters, and that these parameters
correspond to readily identifiable properties of sample behavior. Note that these two attributes

do not always occur together.

In order to lead to "tractable analytical problems," the model type must have a well struc-
tured "calculus" or rules of manipulation. Transfer function models are in this category, as are
the conventional Gauss-Markov models; but neither of these model types is sufficiently compliant

to permit the inclusion of the relevant feature variation.

In this report, the elementary constituents of the encounter will be described by stochastic
‘differential equations. Such equations have the requisite properties noted above. Further, the
conventional transfer function and Gauss-Markov models are special versions of a model given in
terms of a stochastic differential equation. As with the more prosaic models, addition or deletion
of elementary components of the encounter is easily accomplished by changing the order of the
model. Further, in contrast to the previous models, it is possible to investigate both linear and

nonlinear operation.

The ingredient that gives a system containing a TOV its unique character is the remote
operator himself. The remote operator provides the intermediary through which the disparate
elements are coupled. To provide a complete encounter model then, the operator’s dynamic
behavior must be quantified. Clearly, the operator model must satisfy the desiderata outlined

above, and it must be compatible with the mode] of the external portions of the encounter.

Cperator models are fundamentally more diverse than are models of electromechanical
objects. The human is capable of so many dissimilar patterns of action that it is quite difficult to
capture all of his attributes in a single, simple model. Yet, an approximation to such a model is

required to complete the overall system description.

The issue of selecting a suitable operator model is of primary concern in this report. This is
a topic with an interesting history, and it is explored in much more detail in the next section.
Suffice it to say here that there is a convenient trichotomy of human action based upon the time

scale or planning horizon of the activity. Models based upon this trichotomy are referred to as




knowledge based (long horizon), rule based (intermediate horizon) or skill based (short horizon)

depending upon the type of activity which is being modelled.

The first two of the above model classes require an accurate description of the operator’s
tehavior 1n relatively ambiguous environments. Such models are quite difficult to construct, and
even more difficult to verify since the development of a suitable experimental protocol is a for-

midable task.

The third model category is most applicable to the work reported here. These short horizon
models are also called reflexive. This latter appellation will be used here because it more clearly
identifies the reactive nature of an operator engaged in the type of tasks being studied. Reflexive
models are based upc  the assumption thai the trained operator is functioning in a familiar
environment, and has a wel] defined objective or objectives. This is a situation often encountered
in pointing-and-tracking tasks. The resulting model includes both response delays and the clutter
suppression that are inherent in the operator response to external events. Such models are
pseudo input-output models in the sense that the input to the operator model is a derived vari-
able which is not the neurological stimulus the operator actually receives. In this sense the

operator’s attributes precede the specific operator model in the system description.

Reflexive operator models have been successfully used in several pointing-and-tracking sys-
tems. As will be detailed in the sequel, transfer function models are useful in stationary environ-
raents. and Gauss-Markov models in nonstationary environments. The parameters of the former
are frequently obtained empirically, while the latter may be based on an additional calculation:

e.g.. the minimization of a performance functional.

Both of the conventional model types - transfer function and Gauss-Markov - satisfy the
requisite properties of simplicity and analytical compatability with the external portion of the
encounter state. Unfortunately. neither readily admits the feature variation so much a part of
the TOV application. Feature dependence in the operator mode} can be introduced on an ad hoc

basis by indexing a set of stationary models to the external features. While this is a satisfactory
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approach when the feature changes are infrequent and unambiguous, it does not suffice for the

<ituations of most interest here.

This report develops a reflexive model of the remote operator of a TOV. This model is
expressed as a (nonlinear) stochastic differential equation, and thus fits naturally with the other
encounter primitives to yield the total system model. The development of the model follows the
approach used in creating the optimal control model, but generalizes this earlier work by assum-
ing that the features that determine the realized time evolution of the encounter are both random

and time varying.

Permitting the system equations to depend upon a changing mode of operation aids in the
investigation of multitask operation of the TOV. Indeed, as an initial approximation, multitask
operat;on can be placed within the framework created in this report by simply making the
operator’s observation of the scene, situation dependent. The discrete nature of task selection fits

naturally within the bounds of the generic encounter model.

The next section provides a review of the operator models which have proven useful in other
applications with an emphasis on reflexive models. Section 3 develops the operator model of
choice. It is a nonlinear dynamic equation that is responsive to feature variation. The model is
not complete in a sense made precise in Section 3, and Section 4 provides a useful approximation
that overcomes this deficiency i~ part. Section 5 reviews the development as well as providing
suggestions as to how the model should be completed, and some implications of the model charac-

teristics.

With the full encounter model discussed above, it is now possible to begin a study of multi-
rask operation of the TOV. Because there is no way to verify the model parameters at present,
the full system description provided here should be thought of as a preliminary approximation to
actual system behavior. Nevertheless, a careful study of this model can be expected to yield use-

ful indications of performance sensitivities and limitations.




2.0 MODELING THE HUMAN OPERATOR

A systematic analysis of the performance of the teleoperated vehicle (TOV) requires a model
for the entire system. The model must include a mathematical description of all elements which
significantly influence preselected measures of performance. From a top-down point of view,
important elements are the vehicle dynamics, the chargct.erist.ics of the environment (e.g. terrain
and target dynamics), the observation system (stereoscopic video and stereophonic audio at
present) and the human operator’s control. In this section, methods for quantitatively describing

human performance of representative TOV piloting tasks are investigated.

Section A discusses general man-machine systems and provides an introduction to the issues
involved in modeling such systems. A hierarchy of human functions, organized to reflect the
degree of intellectual involvement required, is identified based on the formalism suggested in pre-
vious works by psychologists and systems theorists. In this framework, the role of the TOV

operator is assessed and the features of the TOV environment which shape it are identified.

In a typical TOV mission, the remote operator drives the vehicle, monitors the local
environment and responds to anticipated stimuli in a prespecified fashion. The local environment
is unpredictable; iv may include, for example, path obstacles, sharp turns and multiple targets.
The high quality of the operator’s visual information (stereoscopic video transmitted via fiber
optical link) enables him to discern these features and respond to them. The result is a problem
which must integrate existing manual control results with a model for the human’s detection and
response capabilities. A historical summary of relevant manual control theory is therefore
presented in Section B. The review is followed by a detailed description of those models which
have received the most exposure and enjoyed the greatest success in application to TOV-related
tasks (e.g. driving, target tracking). In particular, quasi-linear describing function models (DFM)
and the Optima! Control Model (OCM) are presented. The emphasis in this section is on previ-

ous research and its relevance to the manual control aspects of TOV operation.




A. Hierarchy of Human Operator Activities

A theoretical framework within which the teleoperated vehicle can be systematically
analvzed would complement the ongoing experimental testing of the TOV. For this purpose, a
mathematical model of the composite man-machine-environment system is being developed. Pos-

s:ble uses for this model include:

. the assessment of current system performance capabilities in multiple environmental or

tracking scenarios;
° the evaluation of the sensitivity of the TOV to various system parameters;

. the assessment of the usefulness of system enhancements such as diiver aids or addi-

tional sensors (e.g. motion sensors).

The ultimate use of the system model is an important consideration in the selection of a modeling
methodology. For the present aspect of TOV analysis, the emphasis is on the gross system per-
formance as a result of the tnteraction of all system elements, and not on the individual perfor-
mance of any single component. The submodels are thus selected, for a specific system
configuration, to reflect the influence of each component on the overall success or failure of the
system. The submodel of interest here is that of the human operator. Its development requires a
careful evaluation of the role of the human operator, a precise definition of the tasks he must per-
form, and an evaluation of the importance of each. A review of some perspectives on human task

analysis provides a framework within which these issues can be addressed.

Johannsen [1982] identifies all human tasks as falling in one of two categories, controlling or
problem solving. Tasks in the first caiegory include classical continuous control tasks as well as
any other action oriented activities which produce system outputs. Modeis for these tasks are
numerous and well documented. Some are presented in the next subsection. The second category
of tasks, the problem solving tasks, tend to be internally rather than physically demending and

require a higher level of cognitive involvement. Examples include: the formulation and




modification of plans; the assessment of alarm situations; and the development and initiation of
controi procedures to combat such situations. Problem solving tasks generally involve the
development, modification and utilization of the broad knowledge base characteristic of human
beings. Models for these tasks are much more difficult to develop since they must necessarily
include many of the psycho-social factors which govern human behavior. Such factors are

difficult to describe in the quantitative manner generally desired by mathematical modelers.

In an attempt to bridge the gap which existed between modelers who were addressing
specific manual control problems and others who viewed human behavior from a more broad
psychological perspective, Johannsen and Rouse [1978] proposed a framework within which
human activities could be organized. Their hierarchical perspective, illustrated in Figure 2.1, is
amenable to a quantitative computer-like interpretation of human functions, but at the same
time accounts for higher level psychologica.i é.nd intellectual activities such as reflecting and plan-
ning. At the lower level of the diagram, the activities correspond to essentially automatic
behaviours. In highly trained operators, such behaviors, once learned, become reflex-like and are
probably performed at the level of the cerebellum. Johannsen and Rouse point out that events
which necessitate these activities tend to occur more frequently than those which activate higher
level processes. The implication is, however, that although the time horizons involved in the
low-level processes are much shorter, they are not considered more frequently by the high level
processor (in this case the cerebrum with its enormous knowledge base and reasoning capabili-
ties). In fact, they are viewed as essentially autonomous. The authors draw an illustrative anal-
ogy to a time sharing computer system in which certain programs are executed by peripheral dev-

ices and rarely require intervention by the operating system.

Johannsen and Rouse additionally acknowledge that human planning itself can be viewed as
a hierarchical procedure. At the highest level, a broad plan is developed to address major goals.
This plan may not involve specific activities or require immediate implementation. As it is exe-
cuted, however, goals are partitioned into lower and .lower subgoals. Eventually the times

between subgoal identification, corresponding plan development, and ultimate plan execution
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Figure 2.1: Hierarchical Multi-Level Structure of Human Activities

become very short. The authors assert that at this point the planning is probably unconscious
and that a concise system dynamics model, in terms of quantitative state transitions, "probably
provides a reasonable description of human behavior." This issue is discussed again later in this

subsection with reference to the autopilot of Nitao and Parodi.

Rasmussen [1980] continued the trend toward a hierarchical representation of human con-
trolling and problem solving behaviors with the more precise breakdown illustrated by the block
diagram in Figure 2.2 (Adopted from Phatak [1983]). He phrases the behaviors commonly
identified in the field of behavioral psychology in system theoretic terms. The interesting feature
of Rasmussen’s structure is the inclusion of "shunts" or shortcuts which allow the bypass of
unneeded intellectual processes as the state of the system demands. The path indicated by the
first shunt represents the lowest level of human activity, what Rasmussen calls "skill based"
behavior. This type of behavior is exhibited in situations where the operator is familiar with the

observed state of the system; the features he observes have been experienced before and evoke an




-11-

Shunt 1
(skill-based)

Shunt 2 Sy

(rule-based)

Determine Implement |
Sensory Determine Assess Alternative | ) Best Contro
Inputs | Situation > Situation Control Lﬂ Control Action

Strategies Strategy
- Visual
- Vestibular
- Auditory

Figure 2.2: Functional Tasks Performed by the Human.

immediate response. As an example, an experienced driver continuously and automatically
adjusts his steering and acceleration to maintain his desired position on the road. Even in the

event of an abrupt curve in his path, his response is essentially automatic.

The path indicated by the second shunt represents the execution of "rule based" behaviors.
These involve higher cognitive facilities than do skill based behaviors because a conscious assess-
ment of the situation is required prior to the initiation of an appropriate action or procedure.
However, once the situation is assessed, the appropriate action is assumed clear. Rule-based
behaviors, therefore, do not require the intellectual capacities involved in the on-line development

of new plans to handle unanticipated situations.

Finally, the highest level of human behavior, indicated by the path without shunts in Figure
2.2, Rasmussen terms "knowledge based" behavior. At this level, the human utilizes his basic
knowledge of the system and accumulated expertise to generate plans and procedures to be used

in the accomplishment of major goals. Due to the lack of detailed information, these plans may
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be broad and sketchy, perhaps subject only to vague verbal interpretation. Behaviors of this
tvpe. are generally exhibited in the presence of previously unexperienced circumstances. Such

situations are necessarily- characterized by a low frequency of occurrence.

Rasmussen’s. human behgvioral structure of Figure 2.2 can be included as the feedback ele-
ment in a closed loop system. The result is the configuration of nested feedback loops illustrated
in Figure 2.3. Consistent with the previous observation that changes in the system which require
global replanning are infrequent (or at least slow to evolve), the outer (knowledge-based) plan-

ning loop has a long time constant. Similar time scale interpretations apply to the inner loops.

In their work or; an autonomous land vehicle (ALV), Nitao and Parodi, {1985} take the ideas
of "frequency of critical- events” and the associated time scale interpretations one step further.
They propose a hierarchy of autopilot functions which are in fact characterized in terms of the
time horizons involved in the feedback loops. Although these functions are performed by
hardware and software modules rather than a human, the authors’ analytical perspective on the
functions required to drive a vehicle in an uncertain and cluttered environment provides a frame-

work within which the role of the human teleoperator can be analyzed.

F'igure 2.4 illustrates the space-time hierarchy of the ALV piloting functions. In the outer
loop, the "Planner" software uses a broad view of the world (e.g. terrain and elevation informa-
tion) to generate a global plan. An example is “proceed along the road until landmark ‘x’ is
passed, then ...". Such a plan is developed initially, and due to its generality, requires revision
only in the event of a drastic change in the world view. Such changes are assumed to occur either
infrequently or very slowly. The loop is characterized by a time horizon on the order of
r > 10° sec, presumably on the order of that of the entire mission. For representative TOV mis-
sions of the type considered in the present analysis, it is assumed that the type of planning
modeled by this slow outer loop is performed a priori. Thus, the overall online effect of this loop
is eliminated. Missions in which high-level knowledge-based planning behavior influence the per-

formance are considered anomalous. Examples of situations not considered here are:
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. loss of brakes or other mechanical failures;
e  drastic terrain alteration caused by an event on the scale of a natural disaster;

e achange in overall strategic objective.

At the intermediate level of Figure 2.4, a software module called the "Observer” interprets
the general plan in light of additional information collected en route by the on board sensors.
The situation is assessed and the abstract plan converted into a concrete form. The result is a
feasible path, specified in coordinates meaningful to the pilot and sensors, which extends into the
visible future. A localized version of the path is sent to the "mapmaker"” which gencrates a
detailed map of the path in the immediate vicinity of the vehicle. The map includes the broad
path borders, sensor visibility limits, and obstacle information. The latter are generated by a
sonic imaging sensor. This map and additional vehicle velocity data are sent to the next loop,

the functional component of which is called the "reflexive"” pilot.

It is the role of the reflexive pilot to guide the vehicle along a dynamically feasible route
within the planned path while avoiding previously undetected obstacles. In Johannser’s termi-
nology the pilot must "execute" the plan passed down from the observer. This involves two dis-
tinct levels of processing. In the higher of the two, the reflexive pilot utilizes the detailed local
map generated by the mapmaker to formulate and select possible subgoals. At this level,
subgoals are defined as feasible directions in which the vehicle could proceed so as to stay on tie
path, avoid nearby obstacles and make progress in the overall goal direction. One of these
subgoals is then selected based on a weighting of the factors above and vehicle dynamics. In this
sense, the reflexive pilot is a low level planner. The constraints that govern its activity, however,
are so strict (temporally and spatially) that straight forward mathematical algorithms perform
the subgoal generation and selection tasks adequately. This activity is comparable to the low
level planning Johannsen and Rouse described as "unconscious" and "automatic" in the human
being. The time horizons associated with this reflexive planning loop are on the order of 1 sec.
This is consistent with both the relatively high frequency of events which change the relevant

local view (e.g. appearance of an obstacle, movement of an obstacle due to erroneous sensing, or
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appearance of a curve in the road), and the need for rapid control action to respond to these

fecatures.

The inner loop in Figure 2.4 contains the control algorithms and actuators. Its primary
functions are to respond to small perturbations in the desired path (i.e. to reduce noise), and to
execute control commands generated by the reflexive pilot. The loop is characterized by a very
short time scale (r<.1 sec). The functions performed in this loop are on the approximate level of

those modeled by a vast majority of manual control algorithms.

In light of the development above, the role of the teleoperator in representative TOV mis-
sions is now made more explicit. Assumptions about the mission, tasks, human, and environ-

ment which determine the structural requirements of the operator model are presented.

As mentioned above, it is assumed that a global plan for operation is developed a priori and
that for the current analysis, online revisions on the part of the operator are not required. Execu-
tion of this plan is assumed to involve such manual control tasks as traversing a smooth or tortu-
ous path, or tracking a target for the purpose of identification, designation or eventual weapons
release. Simultaneous activities may be required. The human operator is assumed to be well
trained in accomplishing the relevant tasks; he is familiar with the dynamics of the vehicle and

control system, and has performed similar tasks before.

Under these assumptions, the human’s behavior and its effect on the system, are character-
ized by the nature of the task environment. His behavior largely reflects properties of the
environment in light of the curent goals [Newell and Simon (1972)]. For example, when the road
is relatively straight and the tracked target is well-defined and exhibits only benign or predictable
maneuvers, the human’s control behavior consists of simple automatic responses which are well
modeled in concise control theoretic terms. Given a goal and svstem constraints, the control
methodology is relatively unambiguous and the operator’s primary function is that of noise

reduction. His function is characterized by the inner most loop in Figure 2.4.
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The TOV pilot, however, is expected to perform the types of behaviors discussed above in a
natural environment composed of multiple, ambiguous stimuli which can change from moment to

moment. Examples are: .
. sharp turns in the road or steep grades;
e  the appearance or disappearance of obstacles or targets;

e  sudden changes in target acceleration or orientation.

A specific combination of any of these we call a “feature" of the environment. For the
present analysis, we assume that the features of interest to the driver can be enumerated, and

that he has a notion of how they might evolve. Details are presented in Section 3.

The properties of the environment described above can be compared to those which are
input to the reflexive pilot module in the hierarchy of Nitao and Parodi. They are characterized
by a high frequency of transition relative to the time scale of the mission. In the ALV autopilot,
the mapmaker generates the local detailed map which the reflexive pilot uses to define its control
behavior. In the teleoperated vehicle, the human performs both these tasks. His vision enables
him to generate a map of the immediate vicinity of interest. In this case the "map" includes esti-
mates of features and their uncertainties, and the "vicinity of interest” may be in his path or that
of a target. Based on the map, the teleoperator performs the role of the reflexive pilot; that is, he
generates vehicle or tracking control commands which are responsive to features in his map. As
in the familiar case of an experienced driver who, when he encounters a turn in the road,
automatically adjusts his steering and acceleration, it is assumed that due to experience and

training, the teleoperator’s response requires littie reflection and is essentially automatic.

Recall the comparison of reflexive planning as performed by the ALV autopilot to skill
based behavior in the human being. In both cases, a connection was made between the time hor-
izons of changes in the world view, and the level of automation of the response. In the human 1t

was proposed that such behaviors are triggered at the level of the cerebellum and that models for

these behaviors can be developed without taking into account the psycho-social aspects of




-18-

humanity. In the ALV autopilot, sequential software algorithms executed in real time proved
[ J

adequate for the accomplishment of this type of function.

From the perspective of the hierarchies presented in this section, it is postulated that the
majority of human behavior exhibited during the execution of typical TOV missions is "reflexive"
or "skill based". Although in a human these classifications can never be absoiute or distinct, the
implications associated with them, recast the general problem in a more tractable form. With
reference to this somewhat restricted view of the TOV mission and teleoperator’s role, a model
for the system is proposed. The model accounts for a higher level of human control behavior
than most earlier models. The increment is illustrated by the outer loop of the reflexive pilot. In

the next subsection earlier models are reviewed. In Section 3, the present model is developed.
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B. Review of Human Controller Modelling Theory

The use of mathematical modeling as a tool for the analysis >f manned system performance
has been the subject of considerable research for the past 40 years. As a function of the needs,
point of view and background of the researcher, models have been developed based on physiology
[Johannsen (1971), psychology ISiegel and Woif (1969)], cognitive science [Newell and Simon
(1672)) and systems theory |Tustin (1947), McRuer and Krendel (1959), Kleinman, and Levison

(1969)!.

Much of the impetus behind modern manual control research came from the pioneering
work of feedback control engineers during and immediately following World War II. Tustin
{1947, was among the first to compare the control behavior of a human to that of an inanimate
ieedback device, thus laying the groundwork for what has come to be known as the control
theoretic approach to human performance modeling. The earliest research was dictated by the
development of complex weapons systems (e.g. power driven guns); more recently models for air-
craft piloting [McRuer and Graham (1963), Kleinman and Killingsworth (1974)], ship piloting
[Veldhuyzen and Stassen (1977)], automobile steering and following [McRuer and Weir (1969),
(1977), Bekey et al. (1977);, and modern artillery system operation [Phatak et al. (1977), Klein-

man (1981)] have been developed based on the control theoretic perspective.

The driving factor in the investigations referenced above was the existence of a technological
system which could only operate in concert with a human being acting in a manual control capa-
city. Overall, the approach has been particularly successful in quantitatively modeling human
performance in tasks which involve rapidly responding systems with severe constraints on human
performance. For these systems, the models have been successful largely because the operator is
faced with a task which demands his constant attention and response, and allows little reflective
thought. Consequently, his performance is dominated by his control behavior rather than his
reasoning powers or problem solving capabilities. The TOV system, represents a version of such

a system and is thus a candidate for application of control theoretic methodologies.
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Briefiy. the TOV system is unlike previous applications in that it operates in a an unpredict-
able en‘\'ironment that exhibits various features which the teleoperator tries to identify. In the
case that his detection of these features enhances his ability to perform, his role is no longer that
of a simple controller performing a single manual control task in a predictable yet noisy environ-
ment. He must also adapt his response to those environmental features which may result in
changes in the system dynamics. The key observation, moreover, is that his behaviors remain in
the class of "reflexive" behaviors described in section 2.A, and his primary responsibilities in the
realm of manual control (i.e. vehicle guidance and/or target tracking). In particular, it is
assumed that as he becomes aware of features in the environment he reacts according to some
predetermined plan or set of rules. That is, he has experienced the feature before and his response

is essentially automatic.

In the remainder of this section, a discussion of the perspectives underlying the control
theoretic approach and a review of the most popular models which have resulted are presented.

It is concluded with a critical appraisal of their utility in modeling the TOV pilot.
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The Control Theoretic Approach to Human Operator Modeling

The generic block diagram for a manual control system is shewn in Figure 2.5 A few obser-
vations illustrate several perspectives which characterize the control theoretic approach to human
operator modeling. First, the primary goal is a model which is useful for predicting/analyzing
total system performance. The human is viewed simply as one of several system elements. the
input; output behavior of which must be mathematically described in order that the performance
of the integrated man-machine-environment system may be analytically investigated. Note that
the existence of compatible models for the direct task environment as well as the controlled ele-
ment are thus implicitly assumed. With this approach, the analysis begins with system con-
siderations, (e.g. task goals and human limitations) rather ihan a direct analysis of the human
element. The human is modeled from a functional or behavioral standpoint rather than by the
more traditional approach in which his performance is synthesised from a sequence of models for
elementary physiological, neurological and/or cognitive activities (e.g. eyeball motions, knob
turns. memory recalls). The resulting models tend to be less task specific than those previcusly

obtained.

Another i1dea underlying the control theoretic approach is the characterization oi the human
as an element in a feedback loop who correspondingly adopts characieristics such that the closed
loop systemn dynamics approximate those of a "good" feedback system. The exact definition of
"good" is of course depen‘dent on the type of model which is used. This is discussed more fully in

the individual model descriptions below.

Based on the control theoretic perspectives established above, numerous methods for
representing and evaluating human performance 1 a wide range of tasks have beer proposed.
The model structures vary but can. 1 general, be classified into three groups. The first group
comprises those models which rely on linear system theory in the frequency domain to describe
and evaluate the human’s control behavior. [Tustin, (1947), McRuer et ai. (1967}, Anderson

(1970) . The description is based on stability of the entire man-system control loop Of all the
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models in this class, the quasi-linear describing function model and, in particular, the "cross-
over" model of McRuer and Jex {1967 have emerged as the most dominant. These are described
in more detail iu the next subsection. As is often the case in applications fields, the second class
of models emerged to reflect the 1960’s trend in systems analysis from the use of frequency
domain toward the use of time domain techniques. These models rely heavily on state space
methods to represent human limitations, perceptual processes, and information processing and
control 'decision capabilities. The most sophisticated and well validated model in this class is the
Optimal Control Model (OCM) of Kleinman et al. !(1969), (1971)]. Since its formulation, this
model has, in varying forms, enjoyed considerable attention and multiple applications. It is
described in detail below. The last class of models includes an enormous number of nonlinear.
finite state and discrete models. The motivation, success, and applications of a few of these types

of models are discussed briefly at the end of this subsection.
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Quasilinear Describing Function Method (DFM)

Quasilinear Describing Function models are the most widely used and well- validated
human operator models in the class of models which apply frequency domain methods to
represent and evaluate the system. They have been highly successful in modeling human
behavior in the limited but important class of stationary compensatory tracking tasks. In these
tasks, the operator observes the error between desired and actual output and by manual means
acts to null or "compensate" for the error. The majority of applications have involved automo-
bile steering and aircraft piloting [see e.g. Ashkenas and McRuer (1962), McRuer and Graham
(1963), McRuer and Wier (1969);. Models based on the describing function method are unstruc-
tured; they attempt to describe human input/output response by the adoption of a model form
and the selection of model parameters which give the best fit to data available for a given task.
During the development stage there was no attempt to mimic the human’s physiological struc-
ture, although certain analogs have been identified since. These are discussed later in this subsec-

tion.

The structure of the compensatory tracking systems typically modeled with describing func-
tion models is illustrated in the block diagram of Figure 2.6. The characteristics of the controlled
vehicle and control actuator are lumped into the block labeled "controlled element dynamics".
The human operator block may include nonlinearities. To the extent, however, that the man-
machine system operates under stationary conditions, and that a linear model can account for a
significant portion of the human’s control action, a quasi-linear approach to modeling the

operator’s response is appropriate.

For the quasi-linear approach, the human’s control response, ¢,, is represented as the sum of
q PP po ¢ p

two components;
¢ =4 +n (2.1)

where [, is the response of an "equivalent" linear element and n, is the "remnant". In the
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(2.2)

where G(jw) is the "describing function" and E(jw) the transform of the input to the human.

Figure 2.7 illustrates the equivalent block diagram. Signals are represented in the frequency

domain to emphasize the stationarity requirement. The display dynamics are lumped in the con-

trolled element block.
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Figure 2.7: Equivalent Block Diagram of the Human Operator in a Continuous Control Task

The determination of a describing function for a specific non-linear element depends on the
nature of the input. Commonly used input types are periodic (in particular sinusoidal) or ran-
dom with specified stochastic properties. The case of sinusoidal inputs provides a simple, illustra-

tive example of the technique.
Denote the response of a nonlinear element by ¢, and the input by e¢,. For a memoryless

system their relationship is
¢ = [(e) (2.3)

If ¢, is sinusoidal, i.e. ¢, = E sinwt, the response is likely to be non-sinusoidal but periodic with
the same period as the input. It thus has a Fourier series expansion which is the sum of a funda-
mental and all higher order harmonics. The fundamental is related to the input by an amplitude
ratio and a phase shift. This relationship defines the describing function of the element in the
same manner that it defines the transfer function for a linear system. If the nonlinear element is
memoryless, the output is in phase with the input and the describing function is simply the

Fourier coefficient of the fundamental; i.e. the ratio _of the amplitude of the fundamental to that

of the input.
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The describing function derived for sinusoidal inputs has another interpretation which plays
an important role in the derivation of the D.F. for random inputs. It is a well-known result of
the theory of Fourier series for L? periodic functions that the Fourier coefficient of each term
minimizes the mean-squared error between the associated basis element and the original function.

For example. if f(t) has the Fourier sine series

. f(t) = Y C.E sinkwT (2.4)
k=1
then
C, = C:min |l f — C F sinkwT |, is achieved; k = 1,2, - - (2.5)
where the norm || * ||, is the LZ(T) norm

g lig = ({ £)%dt)/? (2.6)

Thus, in the memoryless case, the describing function is the equivalent gain, K,,, and

K., = K: min (‘[ -Ke,)) is achieved, (2.

-1
~—

where ¢, = E sin wt.

In practical manual control systems, the types of inputs most commonly encountered by the
human are random or random appearing. These inputs have no interpretation in terms of a
Fourier fundamental and higher harmonics, but are instead specified in terms of their statistical
properties. An extension of the interpretation of the describing function as a linear approxima-

tion which minimizes mean squared error is now presented for random inputs.

The problem 'Booton (1954) is to find a linear element with impulse response g (7) such
that
a0

min ‘¢, - [ g(rle(t -ridr , (2 8)

is achieved. The function ¢, again represents actual operator response, and ¢, his input  The
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norm for a stationary second order random process is defined in terms of the probability density
function of the underlying random variables as

1/2
1/2 *
to(a)iz= (Ei9@)1?) =| [ olalpla)as (29)

The calculus of variations yields the defining equation for the describing function, G(;w), as the

solution of (2.8);
R, (7) - {g(s)n,,(r—s)as >0

or (2.10)

where R,,, and ®,, are the cross-correlation function and the power spectral density of the opera-
tor inputs and outputs. This usual result for a linear system provides, in fact, the defining rela-
tion for the equivalent linear element in a non-linear system. This is not unexpected since corre-
lations measure the ltnear relationship of signals. Notice that (2.10) does not provide a computa-
tional procedure for obtaining the describing function, G(jw). In particular, ¢, (w) probably

has no analytical representation but must be empirically derived based on experimentation.

Finally, observe that equation (2.10) was derived via an open loop analysis. In a feedback
svstem like the one of interest here, the analysis is more complicated because the input to the
nonlinearity depends on the response. In this case it is usually assumed that the input to the
nonlinearity is Gaussian. This is reasonable because if the output of the nonlinearity is non-
Gaussian. the lowpass characteristics of the controlled element tend to make it more Gaussian.
Similarly, in the case of a feedback loop containing sinusoidal signals, the lowpass controlled ele-
ment tends to filter the higher harmonics of the output of the nonlinearity and thus restores the

sinusoidal nature of the input sign=}.
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With these observations and the equation (2.10), the closed loop analysis outlined below
McRuer (1959)] yields a representational equation for G(jw) in terms of measurable quantities.

The cross spectral density between the operator output and the system input is

G S
®u =TT T Ton P
G
= —Q
1+GH ** (2.11)

where the second equality follows because the remnant is uncorrelated with the input. The cross

spectral density between the error and the input is -

1
@ = eesseee— A
L 14 l + GH Q‘. (2'12)
Thus, dividing (2.11) by (2.12),
. P, (jw)
G Jw) T e—— 2.13
S W) (2.13)

Again. (2.13) permits the empirical determination of G(jw) from experimental data for ¢, (jw)

and ¢, (;w).

Based on a series of empirical studies involving aircraft pilots, McRuer 1959, concluded

that most operator behavior could be well-fitted by the generic describing function

1 + jwr, 1 - o,
e

G(jw) = K

(2.14)

1+ jwr, | 1+ jwry

with an additive remnant, where the time delay r,, gain K, and time constants r;, r,, rp are
estimated. In general it is thought that r, and ry (which has come to be known as the "neu-
romuscular lag"), are essentially inherent physiological quantities, whereas the operator’s static
gain, K. and lead and lag time constants, r;, 7;, reflect the equalization adopted by the human

to achieve good closed loop performance.
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The generic describing function (2.14) has been successful in describing human transfer
characteristics for a variety of controlled element dynamics, but is by no means fixed. McRuer,
Graham, and Krendel [1967] note, for example, that for low frequencies ry acts essentially to
increase the time delay and thus combined 7, and 7, to yield an effective time delay re and the

simpler form of the G (jw);

1+ juwr —ywr
G(juw) = K(-—-—J—L) e (2.15)
1+ jur

This form has been used in concert with multiple conventiona! stable controlled elements with
low input frequencies |see, in addition, Levison and Elkind (1967),. On the other hand, in some
cases, such as in the presence of an unstable controlled element or higher input frequencies, more
complicated structures have been required to yield adequate matches with experimental data.
One of the more common refinements has been t.h: inglusion of a catchall increment in the low
frequency phase angle to account for the low frequency lag.s observed in operator data. McRuer

et al. '(1967), (1969)] discuss these more fully and present gain-pha;se plots for numerous con-

trolled elements, all of which are matched by sotne version of the describing function.

Complete specification of a describing function is a two step procedure, the first of which is
the specification of a form such as (2.14) or (2.15). Next, a strategy for the selection of the
parameters K, r;, r; etc. such that the closed loop system exhibits "good" closed loop perfor-

mance is required. A good system in the classical sense shculd |see for example Dorf, (1974);:
. suppress disturbances;

. reduce the sensitivity of the systemn to variations and uncertainty in the elements of

the system;
. provide good servo response over the bandwidth of the inputs;

e  provide adequate gain and phase margins.
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These properties are classically analyzed in terms of the open-loop frequency response.
Hop(jw) 2 Ghw)H(52)

where H(jw) is the transfer function of the controlled element, and G'(jw) is the describing func-
tion. In principle, the goals set out above, or at least a compromise thereof. can be achieved by
choosing the parameters so that the open loop gain is high for low (input) frequencies, and low
for high (noise) frequencies. Adequate stability margins must be simultaneously maintained. In
the "crossover" model of McRuer et al. '1967 these requirements are met by the selection of r,
r.. and A so that the open loop gain behaves as an integrator in the region where

Hoi (74)

124

1. This 0 dB frequency is called the crossover frequency. w,. Mathematically,

Ho {jw) = G(]@')H(]u);:-:—e']w' near w = w, . (2.16)

Jw

This equation specifies what H,; should look like, but does not indicate an automatic procedure

for the adjustment of ry, r;, 7;, K and 7, to achieve the crossover behavior. McRuer and Jex

1967 summarize a series of what they call "verbal adjustment rules" for adjusting the parame-

ters to achieve (2.16). They are not neat, sequential rules but rather guidelines which have been
a

applied and have led to successful -esuits for controlled elements with K. K s, K s°. and

A si{s - r)dvnamics

Recall. the second component of operator response which results fromn the quasi-linearization
decomposition process i1s the remnant. The remnant is that portion of the operator’s total

response which is linearly unrelated to the input. It's existence is attributed to such factors as:

. non-linear human input output response due, for example. to indifference thresholds:
L non-steadv pilot behavior,
) intentional noise mnjection by the huinan to probe or hinearize the system,

. stochastic vaniation intrinsic 1n human response
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Methods for modeling remnant are not as weli-developed as for the linear portion of the
DFM. The existing models generally consist of empirically derived (1st order) noise spectra
injected at the operator’s input or output (see Figure 2.8). The point of insert.‘ion is arbitrary and
is not intended to indicate the physical source. The equivalent closed loop remnant, however, is
uncorrelated with the input (and thus any linear transformation thereof). Thus, the power spec-
trum of the output, ¢, (+), is given as the sum

12
w) = G(yw) | w w 7
4>(,'C( ) 1+ G(]u.)H(]w) { Qu( ) + q’nn(“’) (21‘)

where is the equivalent closed loop describing function. In the optimal control model

G
1+-GH
described in the next section, the model for that portion of remnant due to the stochastic nature

of the human’s response is made more explicit.
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Discussion

Describing function models have been used to explain a large body of manual control data,
thus justifying the approximation of man as a linear element in some situations. The best results
have been obtained for systems involving a compensatory tracking task with a single display and
single manipulator. As previously mentioned, excellent agreement has been obtained between
measured operator/system describing functions and those obtained via the crossover model.
Bode plot comparisons for a variety of controlled element dynamical structures appear

throughout the literature [see in particular McRuer et al. (1959), (1969)].

Outside the realm of strict laboratory conditions, describing function models have also been
used to predict human-vehicle performance, to study stability or other problems associated with a
particular manned system, and to generate insight into the mechanisms of human perception and
control. As an example, McRuer and Weir {1967] report the use of the crossover model to inves-
tigate the importance of several visuel cues in a freeway driving task. They modelled driver
steering during overtaking and passing maneuvers under good and degraded vehicle and environ-
mental conditions. The baseline case involved nominal vehicle conditions. The second involved a
reduction of air pressure in the rear tires whick resulted in notably different vehicle dynamics.
Bo'h systems were second order, but the second was unstable in the open loop and thus required
constant attention by the driver to produce a conditionally stable system. Four crossover models
were developed for each system; one each to model human response to heading angle, heading
rate. path angle, z.id path rate. The resulting driver-vehicle Bode plots revealed that heading
rate as an input yielded the best system, especially under degraded conditions. Experimental
data collected for the degraded system also led the investigators to conclude that "the driver’s
dominant response (under these conditions) is to heading rate". This corresponded to their

interpretation of the modeling results.

Another example of the type of analysis afforded by models of this type is reported in
McRuer and Weir [1967]. In this case the crossover model was used in concert with a fourth

order air frame model to predict pilot dynamics, to derive a correlation between these dynamics
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and the pilot's rating of the aircraft, and to demonstrate how stability problems can be predicted
and better understood so that corrective measures can be taken. Details may be found in the

reference.

Extensions of describing function methods to multi-input/multi-output tasks have been
developed McRuer and Jex (1969)], but in general, application of the approach to such systems is
difficult. This is because there are no systematic rules for selecting loop structures (i.e. inner
loops and outer loops), describing function forms within a loop, or model parameters. Thus, any
attempt at application would involve a comprehensive research program supported by extensive

experimentation.

Even when the task of interest is of the single input/single output type, there are some
problems associated with the application of the DFM to problems outside the domain within
which it was developed. The basic difficulty lies in the absence of systematic principles for choos-
ing model structures. The model structures given by (2.14) and (2.15) worked well for the tasks
referenced, but since they have no real physical or rational basis, they provide little guidance to a
modeler addressing a new task. Additionally, the verbal adjustment rules used by McRuer et al.
1967 to find the parameters of the model which achieved crossover requirements are not easily
adapted to new situations. Thus, the modeler 1s faced with a non-trivial parameter selection task
even if he has a model structure which he has reason to believe will work. A new application of a
model of this type, would therefore probably require a large scale experimental program before it

could be used to describe even the gross behaviour of the system with any certainty.

In an attempt to overcome the problems identified above, Anderson ,1970: proposed another
frequency domain approach for application to V/STOL aircraft analysis. The model. called
"paper pilot”. is a fixed form model. It is based on the hypothesis that the pilot adopts an equal-
ization strategy which maximizes his impression of the vehicle handling qualities. Mathemati-
cally. a model structure is postulated (that chosen by Anderson for the V. STOL hovering task is
shown in Figure 2.9). then the parameters are selected to minimize some rating function which

weights pilot workload as well as system performance. The problem of choosing model
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parameters is thus replaced with that of selecting a cost functional and then performing a param-
eter optimization (which may itself be computationally burdensome). Anderson’s approach was
applied to some pre-existing data for which pilot parameters were available and yielded good
matches to the pilot ratings of their aircraft. On the other hand, when the method was applied
to pred. -t pilot parameters and pilot rating, the predictions of rating were good, but the matches
with measured pilot parameters questionable. The utility of this approach on a different problem

thus remains unverified.

Another limitation of the frequency domain models described above is their inability to
account for operator response in the abserce of stimulation. As an example, if a target disap-
pears temporarily, the human continues to track, based perhaps on velocity estimates, until it

reappcars. These methods have no mechanism for handling such a situation.

Finally, all frequency domain methods hav-e the ultimate limitation that they are strictly
valid only under stationary operating conditions. An interesting aspect of TOV analysis, how-
ever, involves the operator’s ability to respond to time varying (in particular suddenly changing)
features of the environment which have a direct influence on the dynamical structure of the total
systerm:. Related situations have been addressed by several researchers in the past Phatak and
Bekey (1969), Elkind and Miller (1967)]. Their models were motivated by a desire to model
human adaptive capabilities in the event of a system failure which results in a sudden change in
the system dynamics. The model of Elkind and Miller, for example, addresses a situation in
which the human operator controls a system which is subject to sudden, random changes in pro-
cess dynamics. They assumed that the controlled system consists of a finite number of linear.
time invariant subsystems, and that the operator has an internal mode! for each. At a random
time, the system switches from one mode to another. They assume that the operator is aware of
possibie transitions and is well trained in dealing with thern. The authors’ proposed model relies
on the crossover model to describe the human’s behavior between changes, and methods of sta-

tistical decision theory to model his adaptive behavior when a change occurs. The model for his

adaptation consists of three stages: detection, identification and modification. In the first stage
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he detects changes based on a comparison of expected and actual error rate. In the second, he
identifies the type of change which has occurred. Finally, he selects his new control behavior and
rapidly adjusts to the new steady-state crossover model. The model emphasizes the detection
and identification phases; the experimental program was correspondingly designed to verify pred-
ictions of the subjects’ times of detection and identification of changes. The control dynamics
which result after identification has occurred are not addressed by this model, but since transi-
tions are assumed to occur infrequently, the dynamics during the transition period have little
effect on overall system performance. In a TOV encounter, system changes occur frequently and
the operator’s response during transitions is more critical. Weir and Phatak |1966) addressed the
transition problem with the addition of another stage between the "identification" and "post-
transition steady state" control stages. During this intermediate period, they modeled the opera-
tor as a time optimal controller who acts to null the error which has accumulated during the
detection identification stage before assuming a new steady-state control strategy. The model
explains the bang-bang control behavior exhibited by controllers in situations where large errors

have accumulated.

The frequency domain methods p.resent,ed in this subsection are not. in general, easily
adapted to time variable systems. A typical TOV encounter, however, is characterized by very
pronounced time-variability; that is by frequent, sudden changes in the dynamical system struc-
ture. The environmental features which indicate these changes (to the operator) may be ambigu-
ous and hidden in noise. Due to their moderately high frequency, the operator's control behavior
during detection and transition stages is reflected in overall system performance. For a system
such as this, a time domain approach derived from that embodied by the Optimal Control Model

(OCM). may provide a more natural avenue for modeling the system.
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The Optimal Control Model

The representative model from the second class of control theoretic human operator models
is the Optimal Control Model (OCM) of Baron, Kleirman and Levison {(1969), (1971)'. Since its
development, the model has been applied to a wide variety of manual control problems with con-
siderable success. An extensive backlog of empirical data validates the " hility of the model to
mimic human performance of manual controi tasks. These include, for example, car following
'Bekey (1977)], Remotely Piloted Vehicle (RPV) operation [Grunwald and Merhav (1976),
(1978)., AAA tracking {Phatak (1977)], tank tracking [Kleinman (1981)], and V/STOL hovering
‘Baron and Kleinman (1971), Kleinman and Killingsworth (1981)]. More recent research is
devoted to the extension of the OCM methodology to supervisory and multiple task control prob-
lems which involve increased decision making and reduced manual participation on the part of
the human. For example, models have been developed for the DEMON-multiple RPV operation
task [Mulradin and Baron (1980)| and the AAA flight crew (AAACRU) .Zacharias et al. (1982) .

These models remain to be empirically validated.

The success of the OCM is attributed primarily to the flexibility of the modeling technique
in treating multi-dimensional, time variable. nonlinear and nonsteady state stochastic control
problems within the well-developed theory of state variable optimal control. Multiple tasking,
monitoring and attention sharing are easily incorporated into the model structure Pattipati et al.
(1983), Kleinman and Curry (1977), Levison et al. (1971)] as long as the system can be described
by linear stochastic differential equations. A description of the model, a review of some applica-

tions, and a discussion of the model follow.

The Optimal Control Model is based on the assumption that the well-trained, well
motiva.ed human operator behaves in a near optimal tashion subject to his internal hmitations
and understanding of the task. This underlying assumption 1s not unique to this model. In fact,

. \d . . . . . .
the "crossover model” described in the last section is based on a similar point of view. What
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differentiates this model is the method for representing human limitations and the structuring of

the model to include components which compensate for them.

A block diagram of the standard optimal control model is given in Figure 2.10. At the top
of the loop is the model for the physical system (actuators,/ machine/environment). It is
assumed to be described by stochastic differential equations,(in particular, differential equations
driven by continuous random inputs. The state variables in such a model are hereafter termed

"base states". These could include, for example, position, velocity, pitch or angular rate.

At the bottom of the diagram is the block containing the model for the hurnan operator.
The inputs are the sensory information available to the human. These could include visual, audi-
tory and or vestibular data as a function of the application. These "displayed" variables are

assumed to be linear combinations of the base state variables.

In contrast to the unstructured describing function model of the last section, the OCM is a
structured model. It reflects a homomorphic map of the three psycho-motor functions of percep-
tion. information processing and control actuation. The block representing perception transforms
displayed sensory data into that which is perceived by the human. The information processing
block mathematically describes the human’s ability to deduce information about the current state
given the perceived variables. Finally, the actuation block models the human’s generation of
commanded and realized controls as a function of the estimated base states. It should be
emphasized that although these blocks are organized to structurally maich human functions,
there is no attempt to define the actual mechanism by which these functions are accomplished.
Indeed, the mathematical techniques employed to model the performance of these functions sim-
ply provide a model structure and a means for parametrically describing his total response. This
has proved to be adequate in many applications. The system model and mathematical forms

contained in each block are now presented.
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System Model

The system model is given by a set of linear stochastic differential equations which comprise
the linearized dynamics of the controlled system and environment. Dynamics associated with the
measurement and control subsystems are also assumed to be included here. The equation for the

dy namic model is
dz, = Az,dt + Bu,dt + dw, (2.18)

where z, is an nu-vector of dynamic base states, u, is an r-vector of control variables and u, is an

n-vector of Brownian motion with intensity W;

(dw,) (dw;) = Wdt . (2.19)

A and B are (m x m) and (m x r) linear transformation matrices, respectively. They are
assumed time invariant for convenience. but the method applies to the time variable case

directly.

The displayed variables are assumed t0 be linear combinations of the base state variables;
y! = Dz, (2.20)

where D is a linear transformarion matrix and yf a p-vector. The vector y* should contain all
sensory information available vo the human which might aid his understanding of the system
state. This could include visua!, auditory and vestibular information as a function of the system
configuration. For example. in an 1n situ car driving task, the driver observes his relative posi-
tion (with respect to a car ahead or the center of the road), relative velocity and perhaps other
"visual" information. These are easily expressed as linear combinations of position and velocity
states. Additionally, he might physically sense the acceleration of the car as he traverses a shar-
ply winding road, i.e. "vestibular” information. This information is again expressible in terms of
linear combinations of acceleration states. It is clear than an expedient form of the state vector

relative to the sensed information should be selected.
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The structure of v and the associated problem of modeling it, vary in complexity. In the
case that the display is an instrument panel or a simple display composed of well defined data
(such as one might encounter in a tracking or laboratory control task). the structure of y? 1s more
or less self-evident When the display is a cluttered visual scene, however, the composition of the
vector yf is not as obvious. One method for constructing it involves the augmentation of the
standard display vector (i.e. a vector composed of such things as centerline dispiacement and
relative velocity in a tracking or driving task) with an observation of a "feature" vector which is
composed of additional clues about the system and environment. In some applications, the infor-
mational content of the additional clues can be significant and their inclusion in the mode] for the
display thus mandatory. In fact, it is the ability of a human driver to quickly extract (with vary-
ing degrees of certainty) these features which distinguish him from the current autonomous pilots
and enables him to perform more capably in a cluttered environment. This method is discussed

more completely as part of the generalized operator model in Sectior 3.




..

Human Operator Model

The mathematical models used in the OCM to model the three functions of perception,

information processing and control generation are now presented.

Perceptual Processor:

A human operator has certain limitations which interfere with the process of perception,
thus preventing him from making perfect, instantaneous observations and 'nterpretations of the
system display. The OCM accounts for these limitations by the inclusion of an equivalent per-
ceptual time delay and lumped observation meise. The association of the perceived variables, y/

with those displayed, is thus given by the equation
y! = !h‘-r *+ Y., (2.21)

where v, is a vector of Gaussian white noise which is independent of all other noise processes and
has intensity R,, and 7 is the equivalent perceptual delay. The noise is generally attributed to
such things as errors in perceptual resolution or central processing, but the mechanism for its
generation is not important to the model. The model is completely specified by the selection of
the noise intensity, R,, the delay r, and the identification of any dynamics associated with the

perceptual process or display.

R, reflects the quality of the information in the display vector as perceived by the human.
The value is, of course, display dependent. There are no set rules available for its selection, but
certain guidelines have been suggested. In general, R, is chosen t- be proportional to the mean
squared value of y5

(R,)' - P, (y,‘)2 (2.22)

which defines P, as the noise/signal ratic of the displayed variable type. A value of P,
corresponding to - 20 dB 'Kleinman et al. (1971), has been appropriate for a variety of single axis

tracking tasks. If indifference thresholds are important., they can be accommodated at this point
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by the use of a more complex form of (2.22). Another guideline for the selection of R, in complex
multivariable tasks is given by the attention sharing model of Levison et al. [1971,. The model is
based on the assumption that P, is essentially constant and that P,, the noise, signal ratio associ-

ated with the ith display variable may be selected as
P, = —— (2.23)

where f, is the fraction of attention devoted to the task, and /., is the subfraction of the
operator’s attention given to (),

Values for r have been shown to be essentially constant and on the order of .2 + .05 sec.
Kieinman et al. (1971)..

Some systems exhibit perceptual bandwidth limitations as a result of the dynamic proper-
ties of the display or internal processing by the human. In these cases, the associated lags can be

incorporated directly into the model for the system dynamics, (2.18), and need not be treated

separately here.




Ir formation Processor,'Control Generator:

The assumptions about the human operator’s task comprehension and control strategy
which admit the formulation of the OCM are now made precise. The operator’s control objective
i~ to apply an input to u, to the dynamic system (2.18) so as to minimize a cost functional of the

form
T
J(u)=E f (z; Mz, + u/Nu,)ds | Y, (2.24)
{

where } is the filtration generated by the observations of the system, Y, = o {y}; s <t }, y¥ is
as in equation (2.21), and M and NV are appropriately selected, positive semidefinite and positive
definite, respectively, weighting matrices which should reflect relative costs associated with the
various states and controls. In applications, the parameters of these matrices are the primary
means by which the modeled operator response is shaped to match actual data. In some applica-
tions. a weighting on control rate, v, is also inciuded instead of or in addition to that on u,. This

issue is addressed in the discussion.

The control selected to minimize (2.24) must be chosen from the class of corresponding
admissible controls. v. This class of functions is defined by the following properties |Tse (1971),:
First, the function at any time must depend only on past observations. Mathematically, u(t,y)

must be Y, measurable. It must thus have the form

u(t,y) =t y,:8 < t) (2.25)

Such a control is termed non-anticipative. Equation (2.25) is stated equivalently in terms of a

stopped function

Then.

u(ty) = (ty') (2.26)
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where 3(.,.) is a mapping from R x CFit,, T — R". and CPit,, T| is the class of continuous
functions from 't,, T — RF. Second, a condition which assures the existence of 2 unique (in pro-

bability law) solution to (2.18), (2.21), such that

and
T
Edf Jwitdt: ¥pco s<t<T k-0 (2.27)

is required. A uniform Lipshitz condition on 7y

lt.g)-v(s.S) W <alf-glle: [.geCP(t,, T) (2.28)
where - _ is the usual sup norm
i, = )
i e “!S‘:J‘PT: Heh
and - is the Euclidean norm, provides a sufficient condition.

Thus, the problem is summarized as finding a control of the form (2.25), satisfying (2.28).
which minimizes (2.24) subject to the dynamic constraints (2 18). under the additional assump-
tion that the human has an internal model for the system. The separation principle of stochastic

control provides the framework for its solution.

THEOREM 1 - The Separation Theorem, adapted from Fleming and Rischel. Ch. V 1975

1.  Equation for the conditional mean: Suppose z, and y, are stochastic processes which satisfy
dz, = (Az, - By )dt - du, (2.29)
dy, -~ Dz, dt + dy, (2 30)

where y, is observed. and w, and v, are independent Browniag motions. Let )}, denote the
observation o-algebra. ¥, = o{y, s <t} Then. the conditional mean 7, - E(z, VY,).

obeys the linear stochastic differential equation




o
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di, = (AZ, + Buy)dt + P, D dv, (2.31)
where v, is the "innovations process" defined by
dv, 8 dy, — Dz dt (2.32)
and P, is the error covariance, E { (z, - #,) (z, - #,) " }. and is non-random.

The cost functional (2.24) can be rewritten in terms of the conditional mean as
T
J(u) = E f (3, Mz, + v, Nu,)ds | Y, } + 2, (2.33)
1

where

T T
2= E{ [, Mids, ¥ ;= [ er(MP,)ds 1 Y,
{

!

Let v denote the class of admissible controls. The original stochastic control problem with
partial observations,

wEy

T
min F f (z, Mz, + u, Ny, }ds = Y, ¢ s.t. (2.29), (2.30)
t

thus has the equivalent formulation as a stochastic control problem with complete observa-
tions

T
min E f(z‘;Mf, +u N )ds Y, b+ 2, st (2.31) .
t

[ ¥39

Furthermore, since Z, is independent of the control, the problem may finally be expressed as

the standard stochastic linear regulator problem
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min E f (3, Mi, - u My, )ds ¥, b st (2.31) (2.24)
| ]

The problem has thus been transformed into a Jinear stochastic control problem with acces-
sible state and quadratic cost. The solution to this problem (2.34) is well-known e.g. Fleming
and Rischel Ch, V1. 1975

*

*
v (t,4,)=-N'B'K i =1 i (2.35)
where 7, is as above. and K| is the solution of the matrix Riccati equation

Ko KA 4K -~ KBN'BK - M (2.36)

with boundary condition K; - 0.

The proposition is stated for the case of nondelayed observations. Kleinman 1969 showed
that in the time delaved case, the separation property still holds with the mmse filtered estimate.

i, = E{z, Y, } replaced by the mmse predicted estunate, 2 = E{z, Y, _}.

The significance of the proposition is as foliows: The original problem [2.1%) (2.21) (2.24)
can be solved as two separate problems. one of esiimation and the other of control  First. find
the mmse estimate of z, given the observanons and second. soive the equrvalent stochasiie con
trol problem with accessible state via equations (2 35). (2.36). In accordance with the block
diagram in Fig. 2.10, the two phases of solution are now addressed in the individual blocks

termed "information processor” and "control generator." respectively. The equatlions associated

with each by the OCM are now presented.

Information Processor

The informanion processing block, the heart of the OCM consits of & Kaiman-Bucy hives
cascaded with an optimmai predictor. These generale the mmse estimates of the svsteni states
given the delaved. noisy observations y”  Estimate< of the mean <quared unc “tvan the state
given ! 3 L OISy ) S Y, stimates ot the mean squared ancerta. 'y in the state

estimates are also generated. thus enabling computation of the optimal ro<t via bqguation (2.33).
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The use of the Kalman-Bucy filter implicitly assumes that the operator knows the linearized
state variable representation of the system dynamics and external stochastic disiurbances; he has
an internal model. This assumption is strong, but experience has shown small errors in the model
can usually be compensated by the in'roduction of noise into the model at the process and motor

levels. The human’s model for the system is thus given by
dr, = (Ay, + By, ) dt ~ du, (2.37)
where
E {du,du/} = Wdt,
all other quantities have the same interpretations in Eqn. (2.18), and A and B are "close" to A
and B
The human’s observation of the system is given by the output of the perception block:
vy = D, - v, (2.38)

where equations (2.20) and (2.21) have been combined. Equation {2.38) has the equivalent

representatiorn
dy, - Dz, _dt « dn,_, (2.39)

where y .« the soiution of the equation

and 7, ¢ the Brownian motion process {rom which the white noise v, is derived. Formally,

and
dn,dn/ = R, dt .

Given the pair of equations (2.37), (2.39), an equation for the evolution of the mmse estimate of

z, given the observations {y, s < t} is desired. Kleinman 1969 showed that the solution of




this problem is obtained as a cascade combination of a Kalman-Bucy filter and an optimal (least
measi-square) predictor. The derivation in the reference is complete and only the equations for

each stage are presented here.

In the first stage, the best mmse estimate of the delayed state. z, _,. given the observations
up to time t. {y, s <t} is determined. Since dy, = Dz, _,dt + dn,_. define a new observa-
tion

2t = Ytor
Then
dz, = dy,,, = Dz,dt + dn, . (2.40)

The rrohlem now assumes a more standard form and can be restated in more standard terms.
That is, find the best mmse estimate of x, given the observations {y,: s < t }. The solution to

this problem is known to be given by the conditional mean,
200" a iy, = E(z,_,| Zy—r)
where Z,_, is the observation g-algebra, o{z,_, s <t} The well known Kalman-Bucy filter
gives the equation of evolution for this quantity via the pair of equations
di, , = (A%,_, ~ By,_,)dt + P,_D'R 'dv,_, (2.41)
P, = AP, + PA" - W — P,.D R'DP, (2.42)
where v, is the "innovations process" given by
dv, = dz, - Cr,dt
and P, 15> the covariance matrix of the error, z, = z, - #,. Observe that the equation for the
error covariance matrix, P,, is ap ordinary differential equation. and P, itself a non-random pro-

cess. This is a direct consequence of the assumption that the state vector is composed strictly of

"base" states. That is, the disturbances are strictly of the (Gaussian white noise type.
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In the second stage, the optimal linear predictor generates the present state, Z, from z,_,
according to

-7

. Ar . - 1
Z e T € 1 Tiy = Ser)

- S:( = Ag + By, (2.43)

where 7, denotes the least-mean square prediction of z, given observations delayed by r,
{y, s<t-r}.

This completes the solution of the first problem associated with the implementation of Pro-
position 2.1. Notice that the K-B filter reflects compensation on the part of the operator for his

perceptual limitations as modeled by the lumped observation noise, v,. The optimal predictor

compensates optimally for the delay.

Control Generator:
This block models the operator’s generation of the control. A "commanded" control is gen-
erated by the equation

*
u‘t = - L f[ . (2-44)

*
where L is the matrix of optimal gains generated as the solution of the pair of equations (2.35).
(2.36). To account for the human’s inability to generate perfect control responses, an equivalent
"motor" noise is added to uy;. The result is filtered to account for possible bandwidth limitations.

The motor model is thus given as
Thu +u =uf + o (2.45)

where v is assumed to be Gaussian white noise with intensity S, and Ty is the so called neuro-

muscular lag which has been found to be an essentially inherent parameter on the order of

08 — - 0.1 sec. S, is defined by




- 53 -

where Kleinman 1971 reports a typical value of P = -25dB. The neuro-muscular dynamics
reflected by equation {2.45), can be incorporated directly into the dynamic model {2.37) by the

augmentation of the state vector. z,, with u, to yield

A B z /I 0 duw

I 0
dlu e ] dt || e (2.46)
’ TN ‘ T/'v ’ TN

which has the same form as (2.37). Observe it is the commanded control u/ which is actually

selected to minimize (2.24).

Discussion

The Optimal Control Model provides a mechanism for describing human controller response
in a non-stationary environment. The model is a simpie parametric one: the structure is fixed
and the parameters are then selected to shape the cperator’s modeled response to match experi-
menta: data. In this sense, the OCM is not far from the describing function models discussed
above. Recall the two step procedure for obtaining the DFM: first, a describing function struc-
ture is selected: and second. the parameters of the model are chosen to give the best match with
experimental data. In fact, one would hope that in a staticnary environment the two models
would converge to yield a single human operator model. The above expectation, although
theoretically reasonable, may not be strictly realizable with the OCM 1n its current form. This is
because the OCM is not necessarily parsimonious. Other structures could exist which are equally
adept at matching measured human response data. Phatak 1977, for example, proposed alter-
nate optimal control structures which involved some simplifications to the standard model.

Examples of modifications and simplifications used by him and others include:

° elimination of the perceptual delay:




-54.
® aggregation of the motor and observation noise;
. revision of the terms in the cost functional;
. reduction of the number of displayed variables the human is assumed to perceive.

An argument for the elimination of the perceptual delay is as follows. If the environment is
predictable and the operator well-trained, he is able to compensate for the delay and minimize its
effect. The same function is accomplished mathematically by the optimal predictor in the infor-
mation processing block of the OCM. For this reason Phatak and others (e.g. Baron and
Levison 1973 ) have eliminated the delay from the model. Other researchers [Hess (1977) have
chosen instead to approximate the delay with a Padé approximation which is then incorporated
directly into the system dynamics. The elimination of the predictor from the model in either case
greatly reduces the computational burden in application. Aggregation of the motor and observa-

tion noise is similarly justified with an argument that the operator is well-trained.

I the OCM presentation above, a weighting on control (u,) was included. This was the
case in the original development, but in this early work, Kleinman (1969), the neuromuscular
lag was not included in the model. Subsequently, the model’s developers, Kleinman et al. 11971,

included instead a weighting on control rate. Then,

T
J = E f (z' Mz, + & ,Nu,)ds | ¥, (2.47)

!

This formulation gave better matches with experimental data. Additionally it was noted
that highly trained pilots rarely make rapid control movements and thus the inclusion of this
term in the cost functional is physically reasonable. The result of this revised cost functional is a

control law of the form

Pyt (t) ~u (t) =~ L 7, « L i, (1), (2.48)

L 4
where 4, (t) represents the best estimate of the motor noise u, {t). I, is a matrix of optimal




gains. and all other notation is as previously defined. 7y is functionally related to the weighting

in 12.47). The motor noise is assumed to be a (wide band) first order noise process generated by

u, () + ru, (t) = yv, (1), (2.49)

/

where 1, (t) 1s Caussian white noise with covariance S. At this pomnt. in the interest of
simplification. two assumptions were made. First, based on evidence reported to exist by Klein-

man et al. 1971, it was assumed that the bandwidths of u_(¢) and u_ (¢} were approximately

114

* ¥
equal. Then. 7 =1 /7y. Second, it was assumed that [ 4, (!) << L z, and may thus be
neglected. This is a reasonable assumption since u, (t) is a wide band process and at any time

u,{t) 0. These assumptions yield the simplified sub-optimal control law

Ty, +~u = - L 1, v, (t), (2.50)

which "introduces" the neuromuscular lag discussed earlier. In this formulation. the weighting on

u (1.e. the matrix V) must be adjusted to yield an appropriate value for 7.

Since the evolution of the model outlined above, the existence of the contre! dynamics or
neuromuscular lag given by (2.50) has been fairly well acknowledgeq. Many researchers since
Bekey (1977), Hess (1977), among others have opted to include the lag explicitlv. Correspond-
ingly. they introduce a weighting on actual control in the cost functional (u,). This approach is

expedient because:

. Ty is a relatively invariant parameter from task to task. Its explicit inciusion thus ai-

lows it to be selected a prior: and then modeled directly in the system dvnamics.

. The inclusion of a weighting on control rather than control rate simplifies the initial
parameter selection process. In this configuration M and NV may be chosen to reflect
rmaximun allowahle deviations in the mportani variables. These are bLased on physi-

cal considerations and often indicate a good 1nital estumate of the parameters.
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The parameter selection process is discussed further in the appliications section which fol-

iows.

The information processor block of the OCM produces, in addition to the best estimate of
svstem state. Z,, the error covariance P,, and the innovations process v,. These quantities have
important implications beyond those discussed above, and their availability contributes to the
flexibility of the OCM approach. For example, the innovations process provides a key quantity
used in signal processing to deiect events (such as system failures). Additionally, #, and P,
together represent a sufficient statistic (in the case of Gaussian white noise disturbances) for
describing the human’s understanding of the system state. They thus provide the key variables
upon which decisions about system operation can be made. For example, in a situation involving
multiple tasks or a cost on monitoring, a strategy for monitoring is required. This strategy
would be determined based on Z, and P,. Similarly, consider a problem in which the human has
the option of operating in one of several modes (for example in a computer aided mode or one in
which additional sensors or tracking aids are exploited). Then again, his choice of mode should
be based on 7, and P,. More basically, in a simple two-task control situation, these quantities
determine which task he should address. These ideas are suggested and expanded upon by Baron

‘1984 and White '1981 among others.

Applications

The Optimal Control Model has been used both for prediction of human behavior in known
dynamical systems and as a model for the human element during the design and evaluation
phases of systemn development. A review of some of the applications which verify the model
structure and are relevant to the puinting and tracking aspects of the current task, provides a

perspective on the status and utility of the OCM.

The baseline verification and validation studies were performed and reported by Kleinman,
Baron and Levison 1971 . The experiments consisted of a compensatory tracking task in which

the human was given an explicit disnlay of tracking error. e,. It was assumed that the operator
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could extract error rate €,, and e, was thus included in the model display vector y? Velocity

(%) and acceleration (—A:T) control were investigated. The results for both sets of vehicle dynam-
s
ics vielded good agreement between experimental and model predictions of mean-squared closed
loop performance quantities (e,, e,. and u,) Additionally. plots of equivalent human describing
functions derived from the OCM vs. those measured, and of computed vs. measured human rem-
nant spectra were in excellent agreement. It should be noted. however. that the OCM parame-
ters in this study were adjusted on line to yield the best matches with the data. Based on these
initial results, it cannot be concluded that the OCM is predictive nor that the parameters are
independent of the body of data. The significance of this set of experiments is simply that the

OCM is capable of reproducing many aspects of human response. The human hmitation parame-

ters used in this set of experiments are tabulated in Table 1.

| TABLE I

; Human Operator Parameters for Base Line OCM V and V Studies
|
-

T
, dynamics T TN P ' P
k s .1 sec. .08 sec -20dB -25dB
Lk s? 21 sec. .1 sec -204B -25dB
l : i ,

Kleinman et al. 1971 postulated that the parameter values shown in Table | are typical for
many systems and are not in general task dependent. This notion s consistent with results
reported previcvusly by McRuer ei al 1959, 1967 for associated vanables in the DFM. They
reported 7 =.15 sec. (%.05 intrasubject) and ry = .1-.3 sec. with .1 being typical for many tasks
and input types. Other data support this hypothesis. Baron. Kleinman and Levison 197) for

example. used the values r = 15, ry = .1, P, = -20dB and P, - - 25 dB to predict the effects
p N v m
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o' tanges in aircraft stability derivatives on rms hovering performance in a VTOL vehicle. The
7 «r parameters in the OCM (i.e the weighting matricies in the cost functional) were adjusted to
resiect the nature of the task. The pilots were instructed to minimize position error, so a weight-
ire was included on that state variable. Additionally. as a result of the knowledge that well-
tra.ned pilots avoid excessive altitude changes, a weighting was included on pitch rate. The rela-
tive weighting of the two is somewhat subjective. In this case it was based on some existing
experimental data which reflected the balance of position error vs. pitch rate error in a nominal
flight configuration. The results of this model were compared to measured data obtained from a
wide range {in terms of aircraft parameters and disturbance conditions) oi simulator experiments.
In most cases. the model’s predicate performance agreed quite well (within + 1¢) with the data.
Note that a fixed set of operator parameters was used for all conditions. A compizcte set of plots
for the various air frame characteristics are presented in the reference along with a discussion of a
few anomalous points which occurred at the extremes of the (airframe) parameter changes. This
example illustrates the OCM parameter selection process, provides an example of its utility, and
supports the hypothesis that the parameters associated with human limitations may be relatively

invariant for many task types.

As another example in which the OCM was applied in a predictive manner, Kleinman and
Perkins 1974 used the OCM in an anti-aircraft (Vulcan Air Defense-VADS) tracking loop which
exhibited rapidly varying system dynamics. The pilot was required to track both azimuth and
elevation. For each axis, a five dimensional state vector refleciing second order target motion
and a third order gun-sight-hand controller model comprised the system dynamical model. The
humar operator model was the OCM with limitation parameters seiected a prior: based on previ-
ous data as ry = .1sec, r= .21 .05sec., P, = ~20dB and P, - -25dB. The cost functional
weighted tracking error. Again, the model predictions of tracking -rror covariances throughout

the trajectories matched well with human tracking error obtained from experiments.




I'he OUM has been used 1n many other tracking and weapon systems applica* 'ons which are
not aetaled here Harvey and Dillow (1974), Kleinman (1977) . The latter reference presents a
articulary thorough statistical comparison of three arti-tank svstems The OCM was ysed to
generdate an ensemnbie of tracking error time histories for eacl svstenm and eacl of several target
trajectories. The model-generated data were compared against ensembles of equivalent data sets
obtained in field tests. Several methods of statistical comparison (e.g ensemble mean and stan-
dard deviation anaiysis. temporal analvsis. and for stationary target trajectories. frequency
domain analvsis) were used to compare the results. Additionally subjective comparisons of indi-
vidual runs were impressive. The values for the OCM parameters used by Kleinman in this
application were noi reported. He did comment. however, that the only human hmitation
parameter which required adjustment from one tracking systemn to anotiier was the motor noise
parameter (P_ ). This need is attributed to the great variation in the manipulator characteristics

of the TOW, DRAGON and TLV systems.

As a final application of interest in the current discussion, Grunwald and Merhav (1976).
1197%) u<ed the OCM to model manual visual field control of a (low-flying! remotely piloted
vehicle '"RPV). The model was originally developed to model the manual lateral control of the
RPN\ 4iung a nominally straight reference path A five degree of freedom simulator was available
for exper:mental validation of the models. It was used mitially, liowever, to investigate the effect
con<traints on the visual field on pilot behavior. Experiments were performed in which the pilot
was permitted to view the road at only a single distance, at multiple distances. and finallyv in an
unconstrained fashion. The data indicated that his behavior in the two looking-distance scenario
closely matched his behavior in the unconstrained viewing scenario. For this reason. one- and
two- looking-distance models were developed. These were incorparated into the OCM framework
for investigation. The VFE] mode! induded such state variables as fareral deviation from the
reference path, vaw and s,ip angles between the de<ired path and vehicle axis, ard veloaty. In

the hrst stage of the investigation a parametric study was performed to determine the sensitivity

of various model responses to variations in model parameters  Such sensinivities are required f
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the parameters are to be accurately estimated via experimental procedures. In the second stage.
the resu.ting one- and two-distance models were compared to experimental data. The investiga-
tors conciuded that the two-distance VF] model 1s a valid representation of the visual field con-

troi tash with unconstrained viewing.

In tne second reference, the same investigators determined the extent to which the human
operator used the higher order information in the state (e.g. lateral velocity and acceleration).
This information was used to evaluate the effectiveness of augmenting the display with explicit
indicators of such quantities. These display aids were evaluated for various dynamical condi-
tions. Again, the model results were matched with experimental data to validate the model. The
authors concluded that "the analytical model proves to be a convincing representation of actual
man-machine visual field control." and that "this model proves to be an effective research tool for
the prediction of system performance in the development and evaluation of display aids." The
human operator parameter values determined in these studies are summarized in the reference

and a complete discussion of the types of display aids considered is presented there.

The references discussed above are just a few of the many which indirate that the OCM can
be a valuable tool for the analytical investigation of the performance of systems which utilize a
human controller. The teleoperated vehicle is such a system, but its nature is such that the exist-
ing forms of the OCM do not result in an adequate representation for th- human teleoperator.
This i1s due to the unpredictable qualities of the environment, in concert with the availability of a
(visual fie, . display which enables the man’s detection of them. Although visual field displays
were used in some of the applications discussed or mentioned above. in these cases the ability of
the human to extract information from the scene which was not directly related to the base states
was not relevant. In the case of the TOV, however, this aspect of the human'’s abilities is critical.
A mode! based on the OCM methodology, but which accounts for these higher human capabilities

is presented in Section 3
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Nonlinear, Discrete, Sampled Data, Finite State Models

A wide variety of models have been developed to address particular types of human control
tasks. or specitic aspects of human behavior which are not well-handled by the standard models
discussed above. Bekey 1962 for example, proposed a sampled data model for human response.
The model essentially used the DFM to model the human’s control. but assumed additionally
that the human’s behavior was characterized by sampling. data reconstruction and extrapolation
operations at his input. This model was motivated by evidence in some research that human
sampling is intermittent The introduction of a sampler explains the observed presence of fre-
quencies at the human’s output which are not 1n the input signal. Additionaliv. the inclusion of a
fhrst order hold models the human’s ability to extrapolate in the absence of stimulation (note that
this ability is also modeled by the OCM). This model structure is supported by experimental
results when the input frequency is high (- I cps). but in general for lower frequencies a continu-

ous mode| is adequate.

In some control systems it has been observed that humans display bang-bang behavior.
This mav be due to the nature of the controller, or some aspect of the controlled element. For
example. Young and Meiry ‘1965 note that "when the human operator is placed in a control task
with a difficult high order controlled element requiring considerable lead compensation on his
part for stable closed- loop operation, his tracking becomes quite non-linear even with a continu-
ous control stick.”" Systems of this type motivated their development of a simple on off mode! for
human behavior. This non-linear model has proven to be useful for certain controlled elements in
svstems in which minor perturbations are not important, and it is rather the operator’s task to

establhish a fimit cycle to keep the system within aliowable bounds

Finite state models have also been proposed tc model human control in some tasks. Bekey
and Angel 1968 proposed a model 1n which the operator is modeled as a finite state machine
which switches among the states based on the states of the system: Burnham and Bekey 1476

used this general approach to model the human driver in a wingle-iane. ca. following task The
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states of the system were quantitized to yield a four-state system model. A decision logic was

associated with each. Examples of states they used are:

. the car is at a desired velocity but is too close to the lead car
. the car is at the desired relative position but is moving up on the lead car.
Details of the decision logic are presented in the reference. This approach may be usefu! when

meaningful g iantization of all or part of the system 1s possible.

These are just a few of nonlinear, discrete approaches to human controller modeling. There
are many moi. each developed for a very specific reason. Johannsen 1976 . for example. pro-
posed 1 model which incorporated threshold elements and decision elements to account for
human physiological characteristics. In summary, these models have led to promising results for
the specific tasks or situations for which they were developed. They are not, however, generall\
suited to or easily adapted to new systems. They tend to be dynamically dependent: a change in
systemn dynamics can result in a change in model structure. The noun-linear nature of the models
additionally introduces other drawback;s for many tasks. Parameter identification and closed
loop performance analyses of the type to be performed in the TOV-aralvsis program. are much
more difficult to accomplish when non-linearities are in the loop. This makes the models more
difficult to develop and to use. If feasible, a standard approach for which a well developed theory

exists is thus preferable for the current TOV modeling task.
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3. THE GENERALIZED OPERATOR MODEL

The dvnamic model of an encounter involving a TOV contains se. ral interconnected sub-
modeis. Some of these have been discussed in greater or lesser detail ir the preceding sections of
this report  The vehicle. etc. are conveniently described by stochastic differential equations. The

completed encounter model requires a compatible model for the remote operator.

The previous section reviews several alternative ways in which a human operator has been
modelled when engaged in tracking and control tasks. Because it permits the inclusion of both
time variability and randomness, the formalism leading to the optimal control model (OCM) is
attractive. The classical OCM is a linear stochastic differential equation. and is therefore. easily
included with the other sub-models to form the full encounter state. The weighting parameters
in the performance index can be selected to cause the OCM to mimic the behavior of an actual

operator.

W hile the OCM has been used successfully in diverse applications, it is a "short time" model
of human response. It has been found to be most suitable when a trained operator is performing
a well-defined task in a familiar environment. His primary function is noise reduction. There is

little opportunity to use his decision making capability in the context of his assigned vask

The remore operator of a TOV must respond to more varied stimuli than does his counter-
part assigned a conventional pointing-and-tracking task. He must utilize the capabilities of the
TOV in an unpredictable environment. This charge requires more of the operator’s ability to
identify the relevant characteristics of a time varying and ambiguous scene. Thus. he is required
not only to follow a target as it meanders within his field of view, but he must additionally iden-
tify sudden rhanges in target motion, or any other events which influence the dvnamic structure

of the encounter.

In this study the operator still acts reflexively in the sense described earlier. The remote
operator is assumed to have a good understanding of the current scenario. and to have plan of the

appropriate actions which he should take. His uncertainty about the current state of the
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encounier has two distinct components. On the one hand, he uses his observations to estimate
the state of the primary constituents of the encounter: e.g. the center-line of the path to be fol-
lowed. the position and velocity of the target, etc. An analogous functional block is to be feund

in the conventional OCM.

The second component of the TOV operator model results from the fact that certain
dvnamic properties of the primitives of the encounter may change abruptly. Because the opera-
tor is assumed to be cognizant of the possible changes which may take place, it will be supposed
that the mode of evolution of the encounter is indicated by a random process {r,} with state
space {l.....N}. The process {r,} will be thought of as delineating the current status of the

encounter, and {r,} will be referred to as the feature process.

The inclusion of a feature process is not common in the literature on operator models. If
there is but one environment, the notion of a feature indicator is superfluous. Alternatively, if
the features change infrequently and are sufficiently unambiguous, the operator can be thought of

as adaptively changing his own behavior in concert with the exogenous process.

This section considers an intermediate situation in which the feature changes are sufficiently
frequent and equivocal that the operator must accomplish his desiderata in the presence of both
uncertainty in {r,} and significant modal transients. The resulting operator model is still
reflexive, but the time scale of the human intervention is extended beyond that of the OCM. To
distinguish these models, the description of the operator of the TOV will be termed the general-

ized operator model (GOM).

To be more specific, denote by z, the conventional dynamic state of the encounter including
components related to the targets, the path and the TOV. This portion of the system description
will be called the base state. Let ¢, be an N-vector which indicates the current value of the

feature process;

1if v =1
(80), ={0 otherwise (3.1)

Then the encounter dynamics will be given by the joint dynamics of {z,} and {¢,}.




.65 -

Define an augmented encounter state {¢, } by

I
o, (3.2)

lt will be assumed that the dynamics of the base state are given by an equation of the form
dr, -~ (Az, - By))dt ~ p'do, + du, (3.3)

where p’ is a fixed n v N-matrix. The other variables in (3.3) have the same interpretation they
had in (7 37).

Before continuing it is well to review the implications of (3.3) and to contrast it with the
equation which gives rise to the OCM (see (2.37)). If there were no feature dependence, then
p = 0. In this event (3.3) becomes identical to (2.37). Alternatively, if the features are unchang-
ing. do, =0, then p’¢, = p, and (3.3) is equivalent to (2.37) with an additive bias. Such
dvynamic structures are easily accommodated by the OCM.

Equation (3.3} differs from (2.37) in a fundamental way when {¢,} is variable. Suppose the

target suddenly accelerates. This would be indicated by a change in the component of {¢,}

which corresponds to target acceleration, i.e.,
PO FE P D (3.4)

The base state contains a component (target acceleration) which experiences an abrupt change.

{ne feature process {¢,} will be assumed to be a Markov process with transition matrix
Q= 9,

1 +~¢,A ~o(A) ; 1=

Prob(r,,ao =7 r =1) = 0,8 + o(A) (3.5)

N ]
The elements of @ have a simple, intuitive interpretation. The mean lifetime in state 1 is g, "
The protability that {r, } will make an + — ; transition 1s - g,,/¢,,. Consequently. the Markov

process hypothesis leads to a model whose parameters can be estimated from easily discernible

sample function characteristics of {r, }.
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To combine the dynamics of {z,} and {¢,} into a suitable model, let (1, F, P) be the pro-
bability space on which the exogenous process of the encounter model are defined. Let {F,} be
the filtration on 0.x  generated by {w,, r,}. Then {#,} can be described by the stochastic

differential equation
do, = Q ¢,dt + dm, (3.6)

where {m,} is a purely discontinuous {F,}-martingale. Equations (3.3) and (3.6) can be com-

bined to form the external portion encounter dynamic medel;

i) -(a o)z

or more compactly

dt+(€)u,dt+(é)dw,«("]’)dm, (3.7)

dg = (Fg ~ Gu)dt + F dw, + F_dm, (3.8)

where the composite factors in (3.8) are identifiable in (3.7). It is frequently convenient to write

Fll Fl2

matrix relations in block form without the additional comment; e.g., if F‘ = | F. F
a I'»n

’Fll

would be interpreted as A, {F,,} as {p " Q '}, etc.

Equation (3.8) gives the intrinsic model of the external elements of the encounter. Note
again .hat (3.8) differs from (2.37) because of the discontinuous term {F,dm,}. The human
operator ties the disparate parts of the total systemn together through his reaction to observations
of the evolving engagement. The observation etruct:re will be assumed to have a decompositior
that conforms to the state decomposition indicated in (3.2). Denote the observation vector by

{y,}. Then, it will be assumed that

D o) [z
dy,=(0 b,) | a+dn
- Hedt + dn, (3.9)

where b is an N-vector. {n,} is a vector Brownian motion, independent of {w,, m,}. and with




intensity R > 0:
E{nn/} - Rt (3.10)
Let the filtration generated by {y, } be denoted by { Y, }.

The observation model given by {3.9). has the generic form that was used in the conven-
tional OCM ({see (2.40)). Again the salient difference resides in the operator’s reaction to the
feature vector. Equation (3.9) indicates that the operator observes a noisy version of the current
feature state. Feature 1(r, = 1) is represented by a signal b, contaminated by an additive. wide-
band noise. The speed with which the operator can detect changes in features is related to the
size of b, (strength of the stimuli) and the size of the associated element of R (noise intensity).
These are parameters which will be used to tailor the model to the empirical response characteris-
tics of e operator. The OCM uses no feature information, and it is thus represented by (3.9)

without the {¢,} component.

It is well to note that the observation model given by (3.9) is an intermediary for describing
the input-output behavior of the operator. It is not intended to describe the physiological
processes that occur within the operator. The ostensible "observation"” in (3.9) characterizes an
illusory knowledge siate in the operator which is generated after he periorms a stage of physiolog-
ica) scene processing. Thus, while {y,} is an intermediary in formulating the GOM. it is not an
observation in a literal sense. The validity of (3.9) is based. therefore, on indirect measurements
of operator response, e.g. delays, false alarm rates etc., rather than on direct measurement of

scene stimuli.

With the formalism described in the previous section, the explicit description of the GOM
can be derived. The operator is assumed to act to minimize a quadratic performance index J,
given by

T
J = E f (¢ Mg + u/ Nu)dr Y, b M 20 N oo (3.01)
t
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In the previous section, it was shown that the conventional OCM consists of a cascade combina-
tiori of two blocks, a time-dependent processor creating an estimate of the base state, and a gain
block which creates the actuating signal therefrom. This latter is independent of the peculiarities
of the exogenous disturbances. lndeed, as will be shown, this block in the GOM is identical to

the corresponding block of the OCM.

The structure of the time-dependent processing is more complicated in this application. The
dvnamic behavior of the GOM is governed by the equations which delineate the first two condi-

tional moments of {¢ };

¢ = E{s | ¥} (3.12)
P, = Var {¢ | Y}
The requisite dynamics of the GOM are the stochastic eqrations which characterize the evolution
of {¢,} and {P,}.

The equations of the time-dependent processor are derived in this section as a sequence of
propositions. Because the development is rather convoluted, the analytical details are provided
in the appendix. The most important of these results is given in Proposition 2. This proposition

provides a representation of the GOM.




————
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PROPOSITION 1. The exogenous processes {m, } and {u;, } in (3.7) have the local moments;

E{dw, F,}=0 (3.13a)
E{dm, F,} =0 (3.13b)
(du,) (du,) = W dt (3.13¢)
N
E(dm dm; F)=Y Qo, dt (3.13d)
v-l
- Ve, )dt
Q0.4 -q 0 -daglg)
with ¢, the indicator of mode 1. and ¢, the ¢ "th row of Q. ]

As indicated above, {m,} and {w, } are both {F,} martingales. Interestingly. the quadratic

variance of {m, } is a linear function of {®,} while the quadratic variance of {w, } is constant.

The next proposition gives a representation of the estimation portion of the operator model.

It is phrased in terms of the innovations process {v,}. Let
dv, = dy, - dy, . {3.14)
Frem (3.9). this can be written as
dv, = H¢ dt ~ dn, - H¢, dt
= H¢dt ~ dn, (3.15)
where .;, 1s the estimation error process:
Wos (316)

The fundamental result of this section s given next.




v
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PROPOSITION 2. The conditional mean process satisfies the equation

d¢, = (F.qp + Gu,)dt + PBH R 'dy, (3.17)

K}

Equation (3.17) gives the explicit form of the information processing block in the operator
model. It has the functional form of a Kalman filter, although as will become apparent, there are
fundamental differences in these two estimators. These dissimilarities are made clearer in the

next proposition.

PROPOSITION 3. The error covariance satisfies the stochastic differential equation

4P,

N
(F.P,~ PF, ~F %I, +F, ¥ Qo,, F, - PHR'HP)dt + dp, (3.18)
121

P

o E{}o}o‘}
where {p, } is given by the equation

T~
(ss"oH R 'y, , -+ | ¢¢ sy, aH Ry, (3.19)

it

dp,

Py =0 .

The relationship between the GOM and the conventional OCM becomes clearer by reference
to Proposition 3. As mentioned earlier, the time-dependent processing done by the operator is
delineated by (3.17). This equauion is identical for both operator models, aithough the implica-
tions are profoundly different. The OCM uses the Kalman gain which utilizes a covariance

matrix { P, } given by the solu:" 'n to

P, -F.P - PF. -F,WF, - PH R 'HP, (3.20)

Equation (3.20) differs from (3.1%) in two fundamental ways, the first rather obvious and
the second more subtle. The discrei~ martingale {m,} has no relevar-e to the OCM. ard hence

makes no contribution to {P,} in (3.20). If (3 K8) is compared to a linear. Gauss-\Markov,




stochastic differential equation as given in (2.37), the most obvious difference is tha. the

Brownian motion term in (3.8) is augmented by an orthogonal term: i.e.
Fodw, = F duv, -~ F_ dm,

Hence. it might be conjectured that the quadratic variance term in (3.20) should be replaced by a

sum of terms in (3.18);
E{(F, dw)(Fydw) | Y} = E{(F,dw)(Fydv)" - (Fpdm ) (F,dm)" 1} {
or

FW WFW ‘ - Fu‘ WF'L‘ L Fm V(ét)["m

This heuristic reasoning is validated by (3.18). The trend term in { P, } is given by an equa-
tion that is identical to that which obtains in the Gaussian case. The only property of the feature

process that influences the trend in { P, } is its quadratic variance.

The forcing term in (3.18) has no analog in (3.20). The conditional covariance in the Gaus-
sian problem is independent of the observation process. In this application, Liowever. tne condi-
tional covariance { P,} is a random process. and hence the gain in the estimator given in (3.17) is
random as well. Furthermore, (3.17) and as a consequence, the GOM are nonlinear functions of
the {y, | process. This again contrasts with both the OCM and the transfer function models

described earlier.

Equation {3.18) can be viewed as a Riccati equation driven by the observation process. To
gain ir.cight into 1ts behavior. suppose that ;‘, were conditionally Gaussian I it has been a long
time since a feature change, this would be a good approximation of the actual distribution.

Because ¢, 1s symmetric about its mean,

=
¢¢ ¢ =0 forall 1 (3.211

Hence, {3.18) is equivalent to (3.20) with the substitution indicated in (3.21)




-72.-

Suppose. alternatively, that ¢, is not symmetric about its mean. This wiil certainly be the

case when a feature transition is suspected. The forcing termn {p, } will now cause the conditional
covariance to change. Interestingly. but not surprisingly, this change tends to be toward higher
cova-iances and thence toward faster dvnamics in the GOM. To see this, suppose that all of the
system variables were scalar. Then

N o~
:S’u

}%l;‘.H'quV‘ “H®R 4t - noise

The asymmetry in ¢ is such that ¢* tends to have the same sign as ¢ with the result that {P}

tends Lo 1ncrease.

I the GOM proposed here, tte operator dynamic gain, PH R}, is a random process
because {FP,} is driven by the innovations process {1v,}. The responsiveness of the operator
changes as his evaluation of the situation changes. Hence, the operator mode! is nonlinear as well
as being time varying. It is the situation-dependent aspect of the model which makes this gen-
eralization so attractive. By contrast to other studies, the feature dependence of the GOM is not

ad hoc. but is instead a consequence of the feature dynamics.

The information processing portion of the, GOM given by (3.17)-(3.18) is not complete. The
factors which multiply dv, in (3.19) are conditional third moments of .g,. To finish the descrip-

tion of the estimation block, the structure of this conditional moment must be displayed.

As pointed out earlier, if ¢ were Gaussian (the conventiona! OCM) this would be a trivial -
}} }, = 0 if ¢ is Gaussian. Unfortunately, in this application the evolution of {p,} is more com-

plex.

PROPOSITION 4. Denote the conditional chird moment of E‘, by I1,: specifically
TN

M{k) = 5¢"a (3.22)

Then the equation for { P, } can be written as




dP, = (F.P, - PF. - F,WF, - Fy ¥ Qo F, - PH R 'HP,)dt (3.23)
+(MMH R Yy, .-~ . TUN + n)H R 'dv,)
Further
dli(k), = fa(k),dt - (Sl k) ~A,H )R Ydv, s 1 =1,2,..., N (3.24)

where f,(k) is given by (A.4.23), S(/. k) is given by (A .4.29) and

T
A = (55 e )us’ (3.25)

[ ]

Equation (3.17). (3.18) and (3.24) give the dynamic equations of the GOM Tlis mode! 1s
expressed as the solution to a set of three, coupled, stochastic differential equations. Unfor-
tunately, the system of equations is not closed in the sense that a mechanism for evaluating A,
has not been presented. Issues arising from the dependence of the GOM on A will Le addressed 11

the next section.

The action biock of the GOM is a relation between ¢, and v, .

PROPOSITION 5.

w = Kgoms, (3.26)
where
Koow = NG T, (3.27)
and {Z,} is given by
L, - FYL -L,F L GN'GYL M (4.30)




Proposition 5 completes the representation of the GOM. As was t:ne case in the OCM, the

model takes the form of a linear funct on of the conditional mean of ti:e encounter state.

This

"gair." 1s independent of both the form and intensity of the exogenous processes. The dynamics

of the GOM are those of the estimation process.

Before teaving this topic, it is well to note explicitly the way in wkhich the GOM is related to

the OCNL I most cases. the state penalty matrix M provides a weighting on only the base-state

componernts:

M, 0O
M=1 10 o
From :2.27)
Yy = - ;\'_IB'(Z‘”i{ * 2124"1)
where
N v
e |- o=
1 T v
21 -‘22|
Under condition (3.31) though
L= - [ (Ehe + 5;2)Q 7 - (A EuBNT'B Ly,

If Q issufficiently small, then ;| & will be small with the resuit .nat
y 12

u ~ - NB L1,

(3.31)

(3.33)

(3.34)

{3 35)

To first approximation then, the GOM 1s identical with the OCM  The term L 50, in (332} 15 a

corsection to the OCM which accounts for the dynamics of the feature procass

Note that ¥, 1s aiso Jependent on the properties of the feat.ure process

1




4.0 SIMPLIFICATION OF THE OPERATOR MODEL

True GOM s given by (307) (3230 0% 240 and 1200 The hrst three of these equations are
Stow haslic. matnin equations o farrh ber dianension 0 tor exaruple. 1s inoan N -
f\ - 0 osaatrixn where noes the dimension of the base <tate Higher moments become even more
tnreroas.  To make this modes usefut an predr ting TON performance. certam simphibications
must be made. These reductions in compiexity take the forn of judicious approximations to the
tract expressions which delineate the GONL

Tne encounter state cortains two clear’sy discerninie suh-vectors: the base state 1 ano 1
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I'i..v sequencing of the operator’s signal processing has implications with respect to the form

roegualion for {\‘X}

Using 14.2), the equation for {@, } can be written directly. This equa-

a~a given n such references as Elliott [19%2})

To illustrate tne utility of {3 17). the
ot s derived from the genera. equation for

SROPOSITION € The dyvnamic equation for ¢, | is ginvern by

do, - @ o,dt - B b lic K, 0. du,

(4.5)
wWheTt
B diag b, by ) {4.6)
b, - b ¢, .

tei.ation (4.3) provides an ymportant portion of the operator dvnamics. It 1s a closed svs-
pe 1% ) )

"er ul eguations in the sense used earhier. but noniinear because of the product dependence of the
secuna rerm on the right hand side of 1451

Tre eguation for 17, ) can be writter as

¢ o - Hu g - 1O PHKHK ldz,

v
It
N

we euation for ¢F 2 sull remains to be soived. aithough the lower right nand siocx of (P § s
xOowr see A B3

/)

' E
diagi o, @




5. CONCLUSIONS AND DIRECTION OF FUTURE EFFORT

TH s report presents the development of a svstem model which will be used to study the
aperation of a TOV 104 rmultitask environment Nodels of those parts of the encounter that are
ex'ernal to the remote operator  targets, TOV,  ete.  are combined to form the base state. A

moda: indicator vector or feature state augrmients the base state to form the encounter state.

In order to quantify the interaction between the TOV and its surroundings. a suitable model
for the operator is required. The methodology emploved in the generation of the conventional
OCN] 15 u<ed here to create a dyvnamic structure (the GOMN} whose response mimics that of a

remote operator cngaged 1o guidance and tracking tasks in an abruptly changing environment.

Trne GGOM has attractive properties in this apphication. The full state model, containing
both the operator and the encounter states. is phrased in terms of a set of stochastic differential
equations. Such equations lend themselves 1o digital simulation. thus permitting an investigation
of specific scenarios. Further. such useful statistical measures of performance as the error covari-

ance i P, } are computed as part of the analvsis procedure.

In the forthcoming period. effort will be devoted to completing the GGOM and 1o investigat-
g multitask apphicrations. Completion of the GOM requires the dvnamic equation for {1z, }
The equation given in (3.17) is a representational result rather than a computational recipe
hecasse L P § s not provided in a computationally feasible form. Even under the hypotheses del-

tieated an Section 4. only the lower night hand block s known explicitly.

lo provide the requisite equations, sorne simpiification of the third moment equation (3.24)
necessary |t i< proposed thar thic he done by assuning that the conditional distribution of ¢
tas ooth Gaussian and nonGaussian parts  A- nenuoned earlier, the Gaussian part plavs ne role
A EEPRE O 0o - wbre Gaassian.  An avalytically tractable approxunauion to the
conCanswian part can then be used 1o create a term which can be used to replace { A} in (3.24).

[ < vartitioning of - into separate parts will result in a imte dimensional operator model.
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Performance analysis of the TOV system is based upon the GOM. However, the imposition
of several simultaneous task requirements creates a distinctly different sort of dynamic structure
from that encountered when there is but one activity. To place this situation within the model
structure defined here. it will be assumed that the operator monitors his diverse tasks by sequenc-
ing his foveal direction. Specifically, suppose that the operator must perform two antithetical

tasks simultaneously, e.g follow an irregular path while simultaneously tracking an evasive target

at a large angular distance from the path. It will be supposed that the operator can focus his

attention in one of two directions;
dy, = H,‘ ¢ dt + dn, (5.1)

where

1 if current foveal direction is along the path
P = (5.2)

2 if current foveal direction is toward the target.

The indexing of the observations gives another dimension to the actuating signal; i.e. the
operator’s action is now the pair {u, p,} rather than only {u,} as in the GOM.

Without further restriction, (5.2) would lead rather quickly to degeneracies in the choice of
{p,}. Rapid switching in direction of observation would give rise to performance that is indistin-
guishable from that which obtains from dual foveal observations; a physical impossibility if only
one operator is permitted. This anomaly can be avoided if every 1 — 2 or 2 = 1 transition in

{p, } must pass through another state p, = 3 such that
Hy=0 (5.3)

The rate at which an intelligent operator will make changes in his direction of observation is

regulated by the lifetime in state 3.

This behavior is made most apparent if the properties of { P, } are explored. Partition {P,}
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where P.,, is the conditional error variance of the feature state (see (4.8)). P,,, is the error vari-
ance of those components of the base state most relevant to task 1, and P,;, is the same quantity

for the portion of the base state relevant to task 2.

The icherent flexibility of the GOM provides the means to quantify the behavior of the
operator even in the presence of variations in observation direction. To see this, note thar the
dynamics ot { } depend upon the matrix {P,} with "faster" response associated with "greater"
uncertainty. To model the operator’s reaction in the two-task application, it could be supposed
that the line-of-sight direction is changed whenever the performance of the unattended task

degrades to apn unacceptable degree.

As an example of how this idea might be stated more precisely, denote by {U,} the cost in

the unattended task and suppose that

T My Py, i P,
U’ - Tf M112 P112 lf Pl—

It
(-]

H

where M,;; is a decomposition of M compatible with the decomposition of { P,} shown in (5.4).

Note that {U,} need not be defined for {p, = 3} since this is a transition state.

The discrete portion of the operation algorithm can then be given by an inequality of the

form
dp, =0 f U, < U (5.6)

where { is a threshold selected to distinguish acceptable from unacceptable performance. To the
extent that this line of research proves fruitful, the question then arises as to how small can U be

chosen in order that the operator model not become indeterminate; i.e. subject to (5.6).

t-o0
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Switching procedures like that indicated in (5.6) have been used by other investigators in the
LQG context. In such references the switching sequence can be precomputed since {P,} is not
random. In the case under study. the evolution of {P,} is situation dependent, and the switching
times cannot be computed a priori. Further the statistical properties of the error variance are
not vet clearly comprehended. Hence, the best form of the switching criterion cannot be defined

with certainty at this time.

Multiple task situations in which operator behavior is indeterminate arise when the work-
load is such that a single operator is unable to perform all tasks satisfactorily. Such a situation
presents arother interesting problem which can be investigated from the present perspective.
One method of maintaining operator workload at an acceptable level involves the introduction of
automation which is capable of performing some of the human’s tasks. The multitask model for
human performance, when used with compatible models for proposed aids, will be of use in
predicting the performance of the augmented system. Various types of automation, deployed in
multiple configurations could be analyzed in terms of their utility in overall system performance
enhancement. Mode switching criteria similar to those proposed in the absence of automation
could be investigated. Such an avenue would provide an interesting application of the multitask

model now being developed.

The work proposed for the next year can be partitioned into two main areas of activity.

AREA 1. The GOM developed in the previous reporting period must be completed, simplified
and related to such empirical data as exists. The "completion" of the GOM has been discussed in
earlier sections. The model of the remote operator must be expressed as a finite dimensional set
of stochastic differential equations. This will be accomplished .y approximating the probability

law of the base state as a sum of two specific parametric distributions.

The OCM has been observed to be rather more complicated than necessary. The analytical
approach leading to both the OCM and GOM is not a procedure which is parsimonious in the

number of free parameters in the model. If system simulation was the only use to be made of the
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model. this would merely be a nuisance. For a careful study of the TOV system, more is

required.

To simplify the GOM, the "relevant" portion of the operator model must be distinguished
from the peripheral dynamics. The aim of this study is to predict system performance. not to
provide a highly accurate operator model. Hence, those aspects of the GOM which have marginal

influence on svstem performance should be deleted.

The indicated simplification and reduced parameterization of the GOM is essential if the
empirical data from the test facility is to be incorporated into the final model determination.
The operator can not be tested apart from the rest of the system. Further, the variables that del-
ineate the GOM are mathematical artifices. Hence. the model parameters can oniv be indirectly
determined from experimental data. To reduce the ambiguity of the relationship between the
mode! and the empirical data, the model must be reduced to a small set of physically substantive

parameters. Such a representation makes more meaningful any sensitivity study based upon the

GOM.

AREA 2. The system description must be expanded to a multitask environment using the pro-
cedures discussed earlier. Both nonrandom, time dependent attention switching as was done
with the OCM - and situation dependent attention switching based on {P,} will be investigated.
The latter is clearly the most apropos, but tu arrive at definitive conclusions, the dynamic

behavior of the covariance equations must be better understood.

It is expected that the proposed work will complement the ongoing experimental activity of
the TOQV test facility. The modelling activity proposed here will be enriched by an interaction
and technical interchange with the test personnel The results of this effort will also aid them in

che development of test protocols.
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APPENDIX

PROPOSITION 1. Since {m,} and {w,} are {F,} martingales, (3.13a)-(3.13b) follow immedi-

ately. Further {w,} is Brownian motion, and hence (3.13¢). To show (3.13d), observe that if

{r,} makes arn 1 — j transition at time ¢,

-1 if k=1 and k,le{i,3)
d"lkdml = l lf k =l f{laJ}

0 otherwise

Hence if r,_ =1

—qedt ifl=4
—ggdt if k=i
g dt if k=1%#i
—qudt if k=1=4

E {dmydm, | F_} =<

Let ¢, be the 1’th row of the Q@ matrix. Thenif¢ . =1

E {dmdm, | F } = (-¢,q,. - ¢ ¢, + diag (g, ))dt

= @, dt

where Q, is the matrix indicated in (A1.3). It then follows that

N
E{dm dm | F} =Y Q ¢, dt
1=]

- V(e,) dt

The quantity on the right side of (A1.4) is called 4(m, m>,. Note that

dm,dm,’ d<m,m>, + (dm,dm, " — d(m,m), )

= d<m,m>‘ + dm

(A.1.1)

(A.1.2)

(A.1.3)

(A.1.4)




where {m, ,} is a matrix martingale, i.e.
E{(dm,,),, F,}=0 (A 1.5)
PROPOSITION 2. As indicated in (3.3)
d¢, = (F.¢; ~ Gu,)dt ~ martingale increment (A.2.1)
From Krishnan (1984), Thm. 8.5.1]
) ) AN
d¢, = (Fig ~ Gu)dt -~ (¢ H' )R 'dvy (A.2.2)

where it has been noted that {u,} is adapted to {Y,} and that {w,} and {7} are independent.

Equation (A.2.2) is equivalent to (3.17).

PROPOSITION 3. The derivation of (3.18) is as follows. From (3.3) and (3.12) the error pro-

cess -;, satisfies
d¢= F ¢+ F,dm + F,dw - P,H R 'dy, (A.3.1)
since P, = ¢ ¢, it is first necessary to obtain an equation for }, % . It is known that
d(650) = (da) s+ (dg) + (dg) (dg)) (A3.2)
Expanding (A.3.1), and using the fact that
(dvy)(dv') = R dt (A.3.3)

it follows that




¢ = (Fo- PH'RUH)¢g" + ¢¢'(Fo = PH'RTH) + F WF. "« F, V(o)F

m

+ PH 'R 'HP|dt - F_ dm,F,,  + F,dm¢ - PH R 'dr-" + F_dw¢’

’ +¢dm F,  ~ ¢dw'F,

“~ ¢dn'R'HF (A.3.4)

w here

dm, = dm;dm, - V(e¢,)dt

Note the ¢¢’ is a symmetric matrix. Let us consider the k'th column at ¢¢;

¢ = s T S T gew) (A.3.5)
= (55|
The equation of evolution of Z‘}, is given by the k’th column of (A.3.4). He: ce,

o~
d¢g = [((F‘— PH'R'H)P), + (P (F,- PH'R'H)"), + (F,WF,"),

. N
+ (Fo V($)FL) 4 + (PH'R"HP).,‘] di + (cdm’ Fl)u

T =
+ (Fpdm¢' )y +¢¢ o H'R 'y, (A.3.6)

where the fact that (F,dm, F, '), is a martingale increment and that

E{ (PH R Ydn¢' ), dn | X:} =0 (A.3.7)

has been used. Combining the columns of ¢¢, , and noting that dm ¢" = 0, it follows that

dP, = (F.P + PF, - PH'R'HP + FywFy + F, VI _)ct +dp, (A.3.8)

where

N

dp, = (¢¢" s H R Yy, ..., ¢ o, nH R'dV,)
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PROPOSITION 4. Beginning as in Proposition 3, consider first the dy namic equation of the con-
d.tional product :¢ ¢, . As indicated previously

d (s ) (dss )a =55 (da) - (deg ) (d g (AA4.1)
The term d << 1s gnen in (A.3.4) and
d¢p = (Fog)pdt ~ (Fpdm) - (F du), - (FH R dv), (A.4.2)
There are many terms in expansion {A.4.1). and it is well to look at them individually
(435 )i = (F. PH RVH):o % - 5 5 (F. - PH'RTH) dt
- (F,dm ~ F,dw - PH R 'dn);: ¢ - ¢¢, (Fdm ~ F dw - PH R ‘dn)’

~ (F,WF, - F, VF," + PH R'HP)dt + F, dm,F, (A.4.3)

¢¢"(F.¢)pdt + (Fpdm), ~ (Fodu), - (PH R (H¢dt +dn,)), |

)

#

o' (d g)
=$¢((F, - PH RT'H)¢), dt ~¢¢ (Fdm + F,dw - PH R 1dn), (A.1.4)
Finally, if we neglect trivial terms
(d5s')(d ) = (Fndm Fp' + Fpdmg' +cdm 'F, ") (F,dm),
+ (Fydws +¢dw F, ) (F, dw),
+(PH R™'dns +c¢dn RVH P)(PH'R ‘dnp), (A.4.5)
Equations (A.4.3)-(A.4.5) give us the basic terms that we need. It is. however. convenient

to simplify some of the terms involved before combining them into {A.4.1). Consider the second

order terms in (A.4.5).




Similarly

But

Hence

Similarly

—— e ———

]

(Fmdm } )‘) (Fmdm)i

(Epmddmlgj

i

(Epmud”h

A

= E Fmd kaA;'] dm; dm
1.2

= 2,\ Fos ka)%, dm.my, ~ dmy, (A.4.6)
- :

[}

(FmdmlFm’)q (Fmdm)k EFmiadmloﬂFMJHZkavdmv
a.§ R

= Z vaa kavFMJBdmlaﬁ dm, (A'4'7)
a,f
. dm,pdm, = dm,dm zdm_ - Vapdm dt
= dn,dm gdm (A.4.8)
(FmdmlFm ’)” (Fmdm )k = 2 Fmakava}gdmodedm7 (A.4g)
a by

Combining (A.4.6) and {A.4.9)

(Fndm Fp + Fpdm ¢’ + cdmFp), (Fpdm), = ¥ Foy Fryi, dm dm,
1A

- ind Fm)l FMAEI dm,dm* -+ E mepm,ypm,ﬁdmodmgdm7 (A4]O)

a,B8.4
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'
i

(Fu,d![ ;r):] (lpwdu")k = ( Z Fwtldwl Z—)] (E kaz\du',l
A

-

-2 Fu qu:‘, dw du,
01

= 3 Fui Fues ;', Wi (A4.11)
A

Hence

(Fodw¢ - ¢du F, "), (F,dw), = (Y‘ Fai Furrsy Wis = Fup Fuos, Wl dt (A.4.12)

LA

Finally

(PH R Ydn¢'),, (PH R 'dn),

tl

3

‘E(PH'R .zd’71§,

i

2 PH R™! 1:,\‘1’7,\
A

> (PH ‘R, (PH'R_I)UEJ dn, dn,
{A
=L (PH'R™Y), (PH R, ¢, R, dt
[
- (PH R 'HP),, dt \ g

Consider next the expectation of the second order term~ ~Nirce

it follows that

Detne a rare v v e
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:/‘ ~ /\
(A(k))i, dt = 35 FryFoias, dmydm, + Fo Fpy g dmydm,
1A
/\
+ 2 FMIGF"I*'[Fm]ﬂ dmadmpdm.’ (A.4.16)
a,8:9
T ‘en
°/',\°
(@55') (d50) = A(k) d (A.4.7)

From the above it is possible to evaluate the third conditional moment. First note that
d(s5"5) = s ((F;~ PH'RT'H) g + ((F.~ PH'R'H)5)s)
+(F ~ PH'RT'H)¢¢ g + ¢(¢" (Fpdm + F dw),
+ G (Fpdm + F dw)’) + ((Fpdm + Fydw), ¢ + (Fpdm + Fodw) 5)¢
= ¢¢ PH'R™'dn); + 4 (PH'R™dn)") - ((PH'R™'dn)y < + (PH R 'dn) )¢’
4+ Fpodmdm'F, ¢ + A(k) dt + martingale increment terms (A.4.18)

The expectation of the right hand side of (A.4.18) can be produced as follows. Define

E(ss'a | Y,)=Ti(k) (A.4.19)
Then
/\.
¢s"((F,— PH'R'H) ¢, = (k) (F,- PH'R7'H)
—_— e —_— T
¢¢’((Fo— PH'RT'H)¢)y = L ¢¢" (F. - PH'R'H)y ¢
{
=¥ N{)(F, - PH'R'H), (A.4.20)
1
Similarly
= - - T
¢(¢" (Fpndm + Fdw), + ¢ (Fpdm + F dw)’) = ¢¢* (F, dm), (A.4.21)
(\
+¢dm’F, =0 (A.4.21)
/—.\

¢(s"(PH'R'dn), + ¢ (PH'R'dn)’) =0 (A.4.22)
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Hence the expectation of the right side of (A.4.18) becomes

—T
(¢ 5) = (N(k) (F, - PH'R™H)" + (F,~ PH'R™H)TI(k)
/\

+ )l] N(l)(F,- PH'R™'H)y + A(k)dt+ F, dmdm " F, "¢,

= 73 (k) (A.4.23)

To obtain the gain term in the dvnamic equation for Il(k), consider the [’th column of

(k).
N(k) = (M(k)y, -« T(k).,)
Then
dTi(k), = (fs(k)), dt + K(IL,k,l) R 'dy, (A.4.24)
where
.- _ T~
K(n9 kal) dt = d <(§§l fk)-l ’ '7' >t + (fg’ §k)-l f' H’ dt (A'4'25)

Only the terms involving 7 in (A.4.18) contribute to d<-,n' >, . Again, there are many

terms which must be evaluated.

((s¢’ (PH'Rdn)), dn’ )i; = ¥ 6. qdn; (PH R "), dn,
= E -Ci }l (PHIR—l)ko Ra; dt

= ;'. }l (PH)y, dt = ;'1 ((HP) ), dt (A.4.26)
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((s(PH'R™dn))] ¢ dn’),; = z §.dng(PH'R™")g5,dn,
= ;?.' & (PH ‘R™)gRy; dt
=66 (PH'),; dt
=& (' (HP), )i; dt
Consequently
—_— T~ — e
((¢s” (PH 'R§ld")h)-, dn’ )s, +((¢(PH'R™'dn)"), dn’),;
= Py (PH"),, dt + Py (PH"),
Combining these terms
d/(s¢ )4 n’)dt = (P,(PH"),. + P4(PH"),. + (HP),P,. + (HP), P,.) dt

Hence

dTI(k), = fo(k), dt + [(P.,(PH'),. + Po(PH"),. + (HP),P,.
+ (HP)‘P‘) + A‘H H’ R—l dV,

where

"",/'.\',
Ay = (s¢"a)as

(A.4.27)

(A.4.28)

(A.4.29)

(A.4.30)

(A.4.31)
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PROPOSITION 5. This proposition follows directly from a decomposition of costs like that per-

formed in iTse (1971)!. Note thatif r > ¢

E{g¢ Mgl Y} E{E{fr'Mfyl Y.} l’c}

"

E{E{};M},i Y.} L}+E{§,‘M§. Y, )

=E{¢ M¢ + TrMP,| Y, } (A5.1)

Hence

T T
J,=E f (¢ Mg +u, Nu)dr| Y, '+ E f MP.dr| Y, (A.5.2)
t ¢

Equation (A.3.8) indicates that {P,} is independent of the control policy. Consequently. {u, }

should be selected to minimize the first term in (A.5.2).

Some care must be exercised in the indicated minimization because the dynamics of ¢ are

not linear, e.g. { P,} depends upon {v,} in {A.2.2). Define

T

Ho=E{ [ (& MG+ Nu)dr| ¥, (A.5.3)
t

H = (¢ Mg, + u Nu)dt ~ dH, (A.5.4)

Suppose that { H,} has the form
H =¢ T.¢ +8 (A.5.4)
with {X,, s, } satisfying the usual assumptions
dH, = 2§,/ £,d¢ + ¢ T,6 + 6, + TrE(d)(d¢)

=26 S, ((F,q + Gu)dt + PH R 'dv, ) + (¢, L, ¢, + 3,)dt




+ Tr£,P,H RHP,
= (2§ (S, F, + 56 + 25 £,Gu + é + Tr £, PH R'HP,) dt
+2¢ L,PH dy, (A.5.6)

But the last term in (A.5.6) is a martingale increment, and the representation of {H,} is in the

form developed in Tse, 1971]. The solution to the regulation problem is well known:
v =-N'B'T,q (A.5.7)
where
£ =-F % ~5F +5BR'B'S, - M (A.5.8)

Zr’-o

PROPOSITION 6. Specializing (A.2.2) to the {¢,} subsystem, it follows that

dé = Q ¢dt + P,oR,; dv, (A.6.1)
where
dv, = dy, - b ¢ dt (A.6.2)
But
P,=E{¢¢ ' Y, }-¢¢
=diag {@,, " ON) - 0O (A.6.3)
Define
B = diag (b,, - - .by) (A.6.4)
b=¢'b
Then

d&l = Qlal“ + (é' - b.,l)é, R;l ‘U‘ (AGS)






